Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
62,837
result(s) for
"Microbiomes"
Sort by:
Effect of chronic and acute heat challenges on fecal microbiota composition, production, and thermoregulation traits in growing pigs1,2
2019
Abstract
The present study aimed at investigating the impact of heat challenges on gut microbiota composition in growing pigs and its relationship with pigs’ performance and thermoregulation responses. From a total of 10 F1 sire families, 558 and 564 backcross Large White × Créole pigs were raised and phenotyped from 11 to 23 wk of age in temperate (TEMP) and in tropical (TROP) climates, respectively. In TEMP, all pigs were subjected to an acute heat challenge (3 wk at 29 °C) from 23 to 26 wk of age. Feces samples were collected at 23 wk of age both in TEMP and TROP climate (TEMP23 and TROP23 samples, respectively) and at 26 wk of age in TEMP climate (TEMP26 samples) for 16S rRNA analyses of fecal microbiota composition. The fecal microbiota composition significantly differed between the 3 environments. Using a generalized linear model on microbiota composition, 182 operational taxonomic units (OTU) and 2 pathways were differentially abundant between TEMP23 and TEMP26, and 1,296 OTU and 20 pathways between TEMP23 and TROP23. Using fecal samples collected at 23 wk of age, pigs raised under the 2 climates were discriminated with 36 OTU using a sparse partial least square discriminant analysis that had a mean classification error-rate of 1.7%. In contrast, pigs in TEMP before the acute heat challenge could be discriminated from the pigs in TEMP after the heat challenge with 32 OTU and 9.3% error rate. The microbiota can be used as biomarker of heat stress exposition. Microbiota composition revealed that pigs were separated into 2 enterotypes. The enterotypes were represented in both climates. Whatever the climate, animals belonging to the Turicibacter–Sarcina–Clostridium sensu stricto dominated enterotype were 3.3 kg heavier (P < 0.05) at 11 wk of age than those belonging to the Lactobacillus-dominated enterotype. This latter enterotype was related to a 0.3 °C lower skin temperature (P < 0.05) at 23 wk of age. Following the acute heat challenge in TEMP, this enterotype had a less-stable rectal temperature (0.34 vs. 0.25 °C variation between weeks 23 and 24, P < 0.05) without affecting growth performance (P > 0.05). Instability of the enterotypes was observed in 34% of the pigs, switching from an enterotype to another between 23 and 26 wk of age after heat stress. Despite a lower microbial diversity, the Turicibacter–Sarcina–Clostridium sensu stricto dominated enterotype was better adapted to heat stress conditions with lower thermoregulation variations.
Journal Article
Fecal microbial composition associated with variation in feed efficiency in pigs depends on diet and sex1
2018
Abstract
Dietary fiber content and composition affect microbial composition and activity in the gut, which in turn influence energetic contribution of fermentation products to the metabolic energy supply in pigs. This may affect feed efficiency (FE) in pigs. The present study investigated the relationship between the fecal microbial composition and FE in individual growing-finishing pigs. In addition, the effects of diet composition and sex on the fecal microbiome were studied. Fecal samples were collected of 154 grower-finisher pigs (3-way crossbreeds) the day before slaughter. Pigs were either fed a diet based on corn/soybean meal (CS) or a diet based on wheat/barley/by-products (WB). Fecal microbiome was characterized by 16S ribosomal DNA sequencing, clustered by operational taxonomic unit (OTU), and results were subjected to a discriminant approach combined with principal component analysis to discriminate diets, sexes, and FE extreme groups (10 high and 10 low FE pigs for each diet by sex-combination). Pigs on different diets and males vs. females had a very distinct fecal microbiome, needing only 2 OTU for diet (P = 0.020) and 18 OTU for sex (P = 0.040) to separate the groups. The 2 most important OTU for diet, and the most important OTU for sex, were taxonomically classified as the same bacterium. In pigs fed the CS diet, there was no significant association between FE and fecal microbiota composition based on OTU (P > 0.05), but in pigs fed the WB diet differences in FE were associated with 17 OTU in males (P = 0.018) and to 7 OTU in females (P = 0.010), with 3 OTU in common for both sexes. In conclusion, our results showed a diet and sex-dependent relationship between FE and the fecal microbial composition at slaughter weight in grower-finisher pigs.
Journal Article
Results from the IceGut study: tracking the gut microbiome development from mothers and infants up to five years of age
by
Knobloch, Stephen
,
Gunnarsdottir, Ingibjorg
,
Arnadottir, Agnes Thora
in
16S rRNA
,
Adult
,
Archaea - classification
2025
This study provides the first comprehensive analysis of gut microbiome development in Icelandic children, covering the time from before the introduction of solid foods to 5 years of age. Although the overall developmental patterns of the gut microbiome in Icelandic children were similar to what has been seen in other studies, interesting differences were observed, such as a higher abundance of Blautia at an earlier age compared to other study populations. Higher alpha diversity in archaeal-positive samples, both in mothers and in children at the ages of 2 and 5, compared with archaeal-negative samples seen in the present study, is worth further investigation. Additionally, the study suggests a potential role of maternal and perinatal factors, particularly GDM, which was not evident until the age of 5 years, emphasizing the necessity of long-term studies.
Journal Article
Spatiotemporal development of late and moderate preterm infant gut and oral microbiomes and impact of gestational age on early colonization
by
Ahearn-Ford, Sinéad
,
Embleton, Nicholas D.
,
Kakaroukas, Andreas
in
Bacteria - classification
,
Bacteria - genetics
,
Bacteria - isolation & purification
2025
The oral and gut microbiome develops from birth and plays important roles in health. This has been well studied in extremely preterm infants (EP; born <32 weeks gestation) and term infants (born >38 weeks gestation), but there is a paucity of research describing oral and gut microbiome development in late and moderate preterm infants (LMPT; 32 to 36 weeks gestation). Our study analyzed microbiome development in 160 LMPT infants from birth to 12 months corrected age. The results showed distinct microbial communities in stool and saliva, with increasing alpha diversity and niche specification over time. LMPT infants’ gut microbiome became dominated by Bifidobacterium by month 3, while the oral community was consistently dominated by Streptococcus . These results highlight that LMPT infants have gut and oral microbiome development that is more like term infants than EP infants, which has important implications for the care of LMPT infants.
Journal Article
Effects of early-life antibiotics on the developing infant gut microbiome and resistome: a randomized trial
2022
Broad-spectrum antibiotics for suspected early-onset neonatal sepsis (sEONS) may have pronounced effects on gut microbiome development and selection of antimicrobial resistance when administered in the first week of life, during the assembly phase of the neonatal microbiome. Here, 147 infants born at ≥36 weeks of gestational age, requiring broad-spectrum antibiotics for treatment of sEONS in their first week of life were randomized 1:1:1 to receive three commonly prescribed intravenous antibiotic combinations, namely penicillin + gentamicin, co-amoxiclav + gentamicin or amoxicillin + cefotaxime (ZEBRA study, Trial Register NL4882). Average antibiotic treatment duration was 48 hours. A subset of 80 non-antibiotic treated infants from a healthy birth cohort served as controls (MUIS study, Trial Register NL3821). Rectal swabs and/or faeces were collected before and immediately after treatment, and at 1, 4 and 12 months of life. Microbiota were characterized by 16S rRNA-based sequencing and a panel of 31 antimicrobial resistance genes was tested using targeted qPCR. Confirmatory shotgun metagenomic sequencing was executed on a subset of samples. The overall gut microbial community composition and antimicrobial resistance gene profile majorly shift directly following treatment (R
2
= 9.5%, adjusted
p
-value = 0.001 and R
2
= 7.5%, adjusted
p
-value = 0.001, respectively) and normalize over 12 months (R
2
= 1.1%, adjusted
p
-value = 0.03 and R
2
= 0.6%, adjusted
p
-value = 0.23, respectively). We find a decreased abundance of
Bifidobacterium
spp. and increased abundance of
Klebsiella
and
Enterococcus
spp. in the antibiotic treated infants compared to controls. Amoxicillin + cefotaxime shows the largest effects on both microbial community composition and antimicrobial resistance gene profile, whereas penicillin + gentamicin exhibits the least effects. These data suggest that the choice of empirical antibiotics is relevant for adverse ecological side-effects.
Here, in a randomized trial of 147 infants receiving distinct antibiotic regimens for early-onset neonatal sepsis, Reyman et al. characterize the gut microbiome and resistance profiles, finding differential effects of antibiotic combinations on microbial community composition and antimicrobial resistance genes.
Journal Article