Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
39,432 result(s) for "Milk proteins"
Sort by:
Ingestion of Insect Protein Isolate Enhances Blood Amino Acid Concentrations Similar to Soy Protein in A Human Trial
Background: Increased amino acid availability stimulates muscle protein synthesis (MPS), which is critical for maintaining or increasing muscle mass when combined with training. Previous research suggests that whey protein is superior to soy protein in regard to stimulating MPS and muscle mass. Nevertheless, with respect to a future lack of dietary protein and an increasing need for using eco-friendly protein sources it is of great interest to investigate the quality of alternative protein sources, like insect protein. Objective: Our aim was to compare the postprandial amino acid (AA) availability and AA profile in the blood after ingestion of protein isolate from the lesser mealworm, whey isolate, and soy isolate. Design: Six healthy young men participated in a randomized cross-over study and received three different protein supplementations (25 g of crude protein from whey, soy, insect or placebo (water)) on four separate days. Blood samples were collected at pre, 0 min, 20 min, 40 min, 60 min, 90 min, and 120 min. Physical activity and dietary intake were standardized before each trial, and participants were instructed to be fasting from the night before. AA concentrations in blood samples were determined using 1H NMR spectroscopy. Results: A significant rise in blood concentration of essential amino acids (EAA), branched-chain amino acids (BCAA) and leucine was detected over the 120 min period for all protein supplements. Nevertheless, the change in AA profile was significantly greater after ingestion of whey than soy and insect protein (p < 0.05). Area under the curve (AUC) analysis and AA profile revealed comparable AA concentrations for soy and insect protein, whereas whey promoted a ~97% and ~140% greater AUC value than soy and insect protein, respectively. A tendency towards higher AA concentrations beyond the 120 min period was observed for insect protein. Conclusion: We report that ingestion of whey, soy, and insect protein isolate increases blood concentrations of EAA, BCAA, and leucine over a 120 min period (whey > insect = soy). Insect protein induced blood AA concentrations similar to soy protein. However, a tendency towards higher blood AA concentrations at the end of the 120 min period post ingestion was observed for insect protein, which indicates that it can be considered a “slow” digestible protein source.
Postprandial Effects of a Proprietary Milk Protein Hydrolysate Containing Bioactive Peptides in Prediabetic Subjects
Milk proteins have been hypothesized to protect against type 2 diabetes (T2DM) by beneficially modulating glycemic response, predominantly in the postprandial status. This potential is, amongst others, attributed to the high content of whey proteins, which are commonly a product of cheese production. However, native whey has received substantial attention due to its higher leucine content, and its postprandial glycemic effect has not been assessed thus far in prediabetes. In the present study, the impact of a milk protein hydrolysate of native whey origin with alpha-glucosidase inhibiting properties was determined in prediabetics in a randomized, cross-over trial. Subjects received a single dose of placebo or low- or high-dosed milk protein hydrolysate prior to a challenge meal high in carbohydrates. Concentration–time curves of glucose and insulin were assessed. Incremental areas under the curve (iAUC) of glucose as the primary outcome were significantly reduced by low-dosed milk peptides compared to placebo (p = 0.0472), and a minor insulinotropic effect was seen. A longer intervention period with the low-dosed product did not strengthen glucose response but significantly reduced HbA1c values (p = 0.0244). In conclusion, the current milk protein hydrolysate of native whey origin has the potential to modulate postprandial hyperglycemia and hence may contribute in reducing the future risk of developing T2DM.
Effects of low doses of fish and milk proteins on glucose regulation and markers of insulin sensitivity in overweight adults: a randomised, double blind study
Purpose To examine whether supplementation with low doses of fish or milk proteins would affect glucose regulation and circulating lipid concentrations in overweight healthy adults. Methods Ninety-three overweight adults were assigned to receive 2.5 g protein/day from herring (HER), salmon (SAL), cod (COD) or milk (CAS, a casein–whey mixture as positive control) as tablets for 8 weeks. Results Seventy-seven participants were included in the analyses. HER and SAL did not affect glucose and insulin concentrations. COD significantly reduced within-group changes in 90 and 120 min postprandial glucose concentrations but changes were not different from HER and SAL groups. CAS supplementation significantly reduced the area under the curve for glucose concentrations (− 7%), especially when compared to SAL group, and reduced postprandial insulin c-peptide concentration (− 23%). Reductions in acetoacetate (− 24%) and β-hydroxybutyrate (− 29%) serum concentrations in HER group were more prominent compared to SAL and COD groups, with no differences between fish protein groups for α-hydroxybutyrate. Serum concentrations of α-hydroxybutyrate (− 23%), acetoacetate (− 39%) and β-hydroxybutyrate (− 40%) were significantly reduced within CAS group, and the decreases were significantly more pronounced when compared to SAL group. Serum lipid concentrations were not altered in any of the intervention groups. Conclusion Findings indicate that 2.5 g/day of proteins from fish or milk may be sufficient to improve glucose regulation in overweight adults. The effects were most pronounced after supplementation with proteins from cod, herring and milk, whereas salmon protein did not affect any of the measurements related to glucose regulation. Clinical trail registration This trial was registered at clinicaltrials.gov as NCT01641055.
No differences in muscle protein synthesis rates following ingestion of wheat protein, milk protein, and their protein blend in healthy, young males
Plant-derived proteins have been suggested to have less anabolic properties when compared with animal-derived proteins. Whether blends of plant- and animal-derived proteins can compensate for their lesser anabolic potential has not been assessed. The present study compares post-prandial muscle protein synthesis rates following the ingestion of milk protein with wheat protein or a blend of wheat plus milk protein in healthy, young males. In a randomised, double-blind, parallel-group design, 36 males (23 (sd 3) years) received a primed continuous L-[ring-13C6]-phenylalanine infusion after which they ingested 30 g milk protein (MILK), 30 g wheat protein (WHEAT) or a 30 g blend combining 15 g wheat plus 15 g milk protein (WHEAT+MILK). Blood and muscle biopsies were collected frequently for 5 h to assess post-prandial plasma amino acid profiles and subsequent myofibrillar protein synthesis rates. Ingestion of protein increased myofibrillar protein synthesis rates in all treatments (P < 0·001). Post-prandial myofibrillar protein synthesis rates did not differ between MILK v. WHEAT (0·053 (sd 0·013) v. 0·056 (sd 0·012) %·h−1, respectively; t test P = 0·56) or between MILK v. WHEAT+MILK (0·053 (sd 0·013) v. 0·059 (sd 0·025) %·h−1, respectively; t test P = 0·46). In conclusion, ingestion of 30 g milk protein, 30 g wheat protein or a blend of 15 g wheat plus 15 g milk protein increases muscle protein synthesis rates in young males. Furthermore, muscle protein synthesis rates following the ingestion of 30 g milk protein do not differ from rates observed after ingesting 30 g wheat protein or a blend with 15 g milk plus 15 g wheat protein in healthy, young males.
Breast Milk: A Source of Functional Compounds with Potential Application in Nutrition and Therapy
Breast milk is an unbeatable food that covers all the nutritional requirements of an infant in its different stages of growth up to six months after birth. In addition, breastfeeding benefits both maternal and child health. Increasing knowledge has been acquired regarding the composition of breast milk. Epidemiological studies and epigenetics allow us to understand the possible lifelong effects of breastfeeding. In this review we have compiled some of the components with clear functional activity that are present in human milk and the processes through which they promote infant development and maturation as well as modulate immunity. Milk fat globule membrane, proteins, oligosaccharides, growth factors, milk exosomes, or microorganisms are functional components to use in infant formulas, any other food products, nutritional supplements, nutraceuticals, or even for the development of new clinical therapies. The clinical evaluation of these compounds and their commercial exploitation are limited by the difficulty of isolating and producing them on an adequate scale. In this work we focus on the compounds produced using milk components from other species such as bovine, transgenic cattle capable of expressing components of human breast milk or microbial culture engineering.
Values for digestible indispensable amino acid scores (DIAAS) for some dairy and plant proteins may better describe protein quality than values calculated using the concept for protein digestibility-corrected amino acid scores (PDCAAS)
An experiment was conducted to compare values for digestible indispensable amino acid scores (DIAAS) for four animal proteins and four plant proteins with values calculated as recommended for protein digestibility-corrected amino acid scores (PDCAAS), but determined in pigs instead of in rats. Values for standardised total tract digestibility (STTD) of crude protein (CP) and standardised ileal digestibility (SID) of amino acids (AA) were calculated for whey protein isolate (WPI), whey protein concentrate (WPC), milk protein concentrate (MPC), skimmed milk powder (SMP), pea protein concentrate (PPC), soya protein isolate (SPI), soya flour and whole-grain wheat. The PDCAAS-like values were calculated using the STTD of CP to estimate AA digestibility and values for DIAAS were calculated from values for SID of AA. Results indicated that values for SID of most indispensable AA in WPI, WPC and MPC were greater (P<0·05) than for SMP, PPC, SPI, soya flour and wheat. With the exception of arginine and tryptophan, the SID of all indispensable AA in SPI was greater (P<0·05) than in soya flour, and with the exception of threonine, the SID of all indispensable AA in wheat was less (P<0·05) than in all other ingredients. If the same scoring pattern for children between 6 and 36 months was used to calculate PDCAAS-like values and DIAAS, PDCAAS-like values were greater (P<0·05) than DIAAS values for SMP, PPC, SPI, soya flour and wheat indicating that PDCAAS-like values estimated in pigs may overestimate the quality of these proteins.
Hydrolyzed Rice Protein-Based Formulas, a Vegetal Alternative in Cow’s Milk Allergy
Formulas adapted to infant feeding, although most of the time made from cow’s milk proteins, can be made from hydrolyzed rice protein but they must be classified as “formulas for specific medical needs”, according to European regulations. The nutritional quality of rice proteins is thus suitable to be used in infant formulas giving that it is supplemented by certain amino acids which can be lacking. Besides, hydrolysis is required to facilitate their water solubility and digestibility. Owing to a low allergenicity of rice and to the absence of the cross-allergy between milk proteins and rice proteins, these formulas are adapted to the diet of children with cow’s milk protein allergy (CMPA), which explains their growing use in some countries. However, CMPA, an expanding disorder, has consequences for growth, bone mineralization, and often has an association with allergy to other foods, including cow’s milk extensive hydrolysate, so that a surveillance of the adaption of hydrolyzed rice protein formulas (HRPF) to CMPA, the absence of unexpected side effects, and the appropriate response to its various health hazards seems mandatory. This paper analyses the health problem deriving from CMPA, the industrial development of hydrolyzed rice protein formulas, and the limited number of clinical studies, which confirms, at the moment, a good allergic tolerance and safety. The goal is to better advise heath care professionals on their use of HRPFs during CMPA.
Growth, Safety and Tolerance in Infants Fed Rice Protein Hydrolysate Formula: The GRITO Randomised Controlled Trial
Background: Hydrolysed rice formula (HRF) is tolerated by >90% of children with cow’s milk protein allergy (CMPA). However, concerns have been raised about potential suboptimal growth in infants fed HRF compared to those fed an extensively hydrolysed milk protein formula (eHF). Aims: To compare growth, safety and tolerance acquisition in infants with CMPA when fed HRF versus eHF. Methods: A multicentre prospective, randomised, double-blind, placebo-controlled food challenge trial was conducted with infants with CMPA. The infants received either HRF or eHF over a 12-month follow-up period. The primary outcome measure was the change from baseline over the study period in weight-for-length expressed as a Z-score. The secondary outcomes were other anthropometric measurements, tolerability and adverse events (AEs). Results: In total, 105 children were enrolled. The weight-for-length measurements were −0.01 (HRF) and −0.29 (eHF) at baseline and 0.29 and 0.05, respectively, at the last visit, with no significant between-group difference (p = 0.28; mixed-effects model). The Z-scores for other anthropometric variables indicated normal growth, with no significant between-group differences. In total, 29 potentially product-related AEs were reported (12 in the HRF group and 17 in the eHF group). A trend was observed toward a faster acquisition of tolerance in the HRF group (median age: 20.4 months) compared to the eHF group (16.3 months), but this was not statistically significant (p = 0.18). Conclusions: HRF demonstrated appropriate growth, acquisition of tolerance and a good safety profile in infants with CMPA, with no significant differences versus eHF. HRF could be considered as an appropriate option in the management of CMPA.
Functional and technological properties of camel milk proteins: a review
This review summarises current knowledge on camel milk proteins, with focus on significant peculiarities in protein composition and molecular properties. Camel milk is traditionally consumed as a fresh or naturally fermented product. Within the last couple of years, an increasing quantity is being processed in dairy plants, and a number of consumer products have been marketed. A better understanding of the technological and functional properties, as required for product improvement, has been gained in the past years. Absence of the whey protein β-LG and a low proportion of к-casein cause differences in relation to dairy processing. In addition to the technological properties, there are also implications for human nutrition and camel milk proteins are of interest for applications in infant foods, for food preservation and in functional foods. Proposed health benefits include inhibition of the angiotensin converting enzyme, antimicrobial and antioxidant properties as well as an antidiabetogenic effect. Detailed investigations on foaming, gelation and solubility as well as technological consequences of processing should be investigated further for the improvement of camel milk utilisation in the near future.
Release of functional peptides from mother's milk and fortifier proteins in the premature infant stomach
Digestion of milk proteins in the premature infant stomach releases functional peptides; however, which peptides are present has not been reported. Premature infants are often fed a combination of human milk and bovine milk fortifiers, but the variety of functional peptides released from both human and bovine milk proteins remains uncharacterized. This study applied peptidomics to investigate the peptides released in gastric digestion of mother's milk proteins and supplemental bovine milk proteins in premature infants. Peptides were assessed for homology against a database of known functional peptides-Milk Bioactive Peptide Database. The peptidomic data were analyzed to interpret which proteases most likely released them from the parent protein. We identified 5,264 unique peptides from bovine and human milk proteins within human milk, fortifier or infant gastric samples. Plasmin was predicted to be the most active protease in milk, while pepsin or cathepsin D were predicted to be most active in the stomach. Alignment of the peptide distribution showed a different digestion pattern between human and bovine proteins. The number of peptides with high homology to known functional peptides (antimicrobial, angiotensin-converting enzyme-inhibitory, antioxidant, immunomodulatory, etc.) increased from milk to the premature infant stomach and was greater from bovine milk proteins than human milk proteins. The differential release of bioactive peptides from human and bovine milk proteins may impact overall health outcomes in premature infants.