Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
68
result(s) for
"Mytilus chilensis"
Sort by:
Native and invasive taxa on the Pacific coast of South America: Impacts on aquaculture, traceability and biodiversity of blue mussels (Mytilus spp.)
by
Zbawicka, Malgorzata
,
Wenne, Roman
,
Gardner, Jonathan P. A.
in
Aquaculture
,
Biodiversity
,
conservation genetics
2018
Gaining new knowledge of the native distributions of species (phylogeography) is more and more difficult in a world affected by anthropogenic disturbance, in particular by species translocations. Increasingly, molecular markers are required to support decisions about the taxonomy of native vs. introduced species, and the existence of their hybrids, to answer phylogeographic questions. In many fields, including aquaculture, traceability and food security, taxonomic and phylogeographic knowledge is key to the successful management and conservation of biodiversity. The Pacific coast of Chile is one of the last regions without a clear and agreed understanding of the taxonomy and systematics of smooth‐shelled blue mussels of the genus Mytilus. A panel of 49 bi‐allelic single nucleotide polymorphisms (SNPs) was genotyped in 338 Mytilus individuals collected from nine Chilean and five reference populations. All analyses confirmed the hypothesis that the native Chilean blue mussel is genetically distinct from the reference species M. edulis, M. galloprovincialis and M. trossulus. These results support the hypothesis of a unique evolutionary history of the native Chilean blue mussel on the Pacific coast of South America. It is therefore concluded that the native blue mussel from Chile should be recognized as M. chilensis Hupé 1854. We confirmed a recent Mediterranean origin of introduced M. galloprovincialis on the coast of Chile. This knowledge advances the understanding of global phylogeography of blue mussels and their bioinvasions and harmonizes taxonomy in the context of aquaculture production, seafood traceability, labelling and trade.
Journal Article
A single clonal lineage of transmissible cancer identified in two marine mussel species in South America and Europe
by
Houssin, Maryline
,
Avilés, Fernando T
,
Baldwin, Susan A
in
Alleles
,
Animals
,
Aquatic Organisms
2019
Transmissible cancers, in which cancer cells themselves act as an infectious agent, have been identified in Tasmanian devils, dogs, and four bivalves. We investigated a disseminated neoplasia affecting geographically distant populations of two species of mussels (Mytilus chilensis in South America and M. edulis in Europe). Sequencing alleles from four loci (two nuclear and two mitochondrial) provided evidence of transmissible cancer in both species. Phylogenetic analysis of cancer-associated alleles and analysis of diagnostic SNPs showed that cancers in both species likely arose in a third species of mussel (M. trossulus), but these cancer cells are independent from the previously identified transmissible cancer in M. trossulus from Canada. Unexpectedly, cancers from M. chilensis and M. edulis are nearly identical, showing that the same cancer lineage affects both. Thus, a single transmissible cancer lineage has crossed into two new host species and has been transferred across the Atlantic and Pacific Oceans and between the Northern and Southern hemispheres.
Cancer cells can grow and spread in one individual, but they normally do not spread to others. There are a few exceptions to this rule. For example, there are cancers in Tasmanian devils, dogs and bivalve shellfish that can spread to other members of the same species. In these creatures, cancer from one individual evolved the ability to spread throughout the population. These cancer cells infect animals like a pathogen.
A fatal cancer called disseminated neoplasia affects many species of bivalves. In four bivalve species, including the marine mussel Mytilus trossulus, scientists have shown that the cancer can spread from one individual to another. This transmissible cancer has been found in M. trossulus mussels in British Columbia, Canada; but related species of mussels in other parts of the world also develop disseminated neoplasia. It is possible these other cancers are transmissible and have spread from one population of mussels to another.
Yonemitsu et al. performed genetic analyses to show that cancers found in two other mussel species – Mytilus chilensis in South America and Mytilus edulis in Europe – are transmissible and arose in M. trossulus. The cancers in the South American and European mussels were nearly identical genetically, which suggests that they came from a single M. trossulus mussel with cancer at some point in the past. Somehow cancer cells spread between the Northern and the Southern Hemispheres and across the Atlantic Ocean, infecting multiple species across the world. The analyses also show that this cancer lineage is different from the one previously identified in British Columbia.
These analyses show that bivalve transmissible neoplasia was able to spread worldwide, most likely through accidental transport of infected mussels on international shipping vessels. This suggests that human activities unwittingly introduced the disease to new areas. Learning more about transmissible cancers may help scientists understand how cancers evolve with their hosts in extreme situations.
Journal Article
Genetic homogeneity and weak signatures of local adaptation in the marine mussel Mytilus chilensis
by
Segovia, Nicolás I.
,
Coral-Santacruz, Diana
,
Haye, Pilar A.
in
631/158
,
631/158/2464
,
631/181
2024
The natural populations of the marine mussel
Mytilus chilensis
and the associated aquaculture industry forms a sensitive social-ecological system that relies on the released propagules for cultivation in the highly heterogeneous environment (temperature, productivity, and salinity) of northern Patagonia (42–44 °S). We assessed spatial genetic structure, signals of local adaptation, and population assignment of
M. chilensis
analyzing 5963 SNPs from 125 individuals across six natural populations sampled over two consecutive years along the southeast Pacific coast (39° 25′ to 43° 07′ S, ~ 430 km). Neutral and putatively adaptive loci revealed high genetic diversity and low genetic differentiation among populations. Of the whole dataset, less than 1% (50) of loci were identified as putatively adaptive through multiple approaches, with only 0.1% detected in by all of them, and only two loci of them were correlated with environmental variables. No evidence of Isolation by Environment (IBE) was found, albeit a slight differentiation in the southern sampling location (Yaldad). These results suggest that the genetic structure observed is primarily shaped by neutral processes with weak signals of local adaptation. Gene-flow appears to be the main evolutionary force influencing the species’ population genetic structure. Because of the importance for the industry, the probability of correct assignment of individuals to their population of origin using allelic frequencies was evaluated. Analyses exhibited relatively low probabilities (< 50% for four out of six sites) of accurately assigning individuals to their geographic origin, with a limited success of SNP markers the for such purposes. Likely, species' high dispersal capacity, seed translocation, and the spill-over effect of mussel aquaculture prevents population genetic differentiation through high effective gene flow, hindering local genetic adaptation.
Journal Article
Proximal and fatty acid analysis in Ostrea chilensis, Crassostrea gigas and Mytilus chilensis (Bivalvia: Mollusca) from southern Chile
by
Navarro, Jorge M.
,
Ramírez, Oscar
,
Farias, Ana
in
Analysis
,
Aquaculture
,
Aquaculture development
2022
Oysters and blue mussels are important hydrobiological resources for aquaculture. In Chile, they are farming on the Chiloé island, where around 18% of the world’s mussels are produced, however, their nutritional dynamics are largely unknown. For this reason, the objective of this study was to determine the proximal biochemical composition and the fatty acid profile in the Chilean oyster (
Ostrea chilensis
), the Pacific oyster (C
rassostrea gigas
) and the Chilean mussel (
Mytilus chilensis
), to perform an intra and interspecific comparison. Shellfish sampled in winter were characterized by a high protein content, followed by medium values for lipid content and a low carbohydrate content compared to similar species in Europe. Also, oysters and mussels were found to be rich in omega-3 long chain polyunsaturated fatty acid (n-3 LC-PUFA), so they can be considered excellent functional food option for a healthy human diet. Their high contribution of n-3 LC-PUFA ranged between 5.2–12.9 μg FA mg
-1
dry weight with high n-3/n-6 ratios, which depends on both the species and the on-growing location. Both taxa can be considered a plausible option to promote a healthy diet of marine origin in future generations. Also, these results could benefit the projection and development of aquaculture of these mollusks.
Journal Article
Chromosome-Level Genome Assembly of the Blue Mussel Mytilus chilensis Reveals Molecular Signatures Facing the Marine Environment
by
Gallardo-Escárate, Cristian
,
Gajardo, Gonzalo
,
Figueras, Antonio
in
Animals
,
Aquaculture
,
aquaculture industry
2023
The blue mussel Mytilus chilensis is an endemic and key socioeconomic species inhabiting the southern coast of Chile. This bivalve species supports a booming aquaculture industry, which entirely relies on artificially collected seeds from natural beds that are translocated to diverse physical–chemical ocean farming conditions. Furthermore, mussel production is threatened by a broad range of microorganisms, pollution, and environmental stressors that eventually impact its survival and growth. Herein, understanding the genomic basis of the local adaption is pivotal to developing sustainable shellfish aquaculture. We present a high-quality reference genome of M. chilensis, which is the first chromosome-level genome for a Mytilidae member in South America. The assembled genome size was 1.93 Gb, with a contig N50 of 134 Mb. Through Hi-C proximity ligation, 11,868 contigs were clustered, ordered, and assembled into 14 chromosomes in congruence with the karyological evidence. The M. chilensis genome comprises 34,530 genes and 4795 non-coding RNAs. A total of 57% of the genome contains repetitive sequences with predominancy of LTR-retrotransposons and unknown elements. Comparative genome analysis of M. chilensis and M. coruscus was conducted, revealing genic rearrangements distributed into the whole genome. Notably, transposable Steamer-like elements associated with horizontal transmissible cancer were explored in reference genomes, suggesting putative relationships at the chromosome level in Bivalvia. Genome expression analysis was also conducted, showing putative genomic differences between two ecologically different mussel populations. The evidence suggests that local genome adaptation and physiological plasticity can be analyzed to develop sustainable mussel production. The genome of M. chilensis provides pivotal molecular knowledge for the Mytilus complex.
Journal Article
Single nucleotide polymorphisms in native South American Atlantic coast populations of smooth shelled mussels: hybridization with invasive European Mytilus galloprovincialis
2018
Background
Throughout the world, harvesting of mussels
Mytilus
spp. is based on the exploitation of natural populations and aquaculture. Aquaculture activities include transfers of spat and live adult mussels between various geographic locations, which may result in large-scale changes in the world distribution of
Mytilus
taxa.
Mytilus
taxa are morphologically similar and difficult to distinguish. In spite of much research on taxonomy, evolution and geographic distribution, the native
Mytilu
s taxa of the Southern Hemisphere are poorly understood. Recently, single nucleotide polymorphisms (SNPs) have been used to clarify the taxonomic status of populations of smooth shelled mussels from the Pacific coast of South America. In this paper, we used a set of SNPs to characterize, for the first time, populations of smooth shelled mussels
Mytilus
from the Atlantic coast of South America.
Results
Mytilus
spp. samples were collected from eastern South America. Six reference samples from the Northern Hemisphere were used:
Mytilus edulis
from USA and Northern Ireland,
Mytilus trossulus
from Canada, and
Mytilus galloprovincialis
from Spain and Italy. Two other reference samples from the Southern Hemisphere were included:
M. galloprovincialis
from New Zealand and
Mytilus chilensis
from Chile. Fifty-five SNPs were successfully genotyped, of which 51 were polymorphic. Population genetic analyses using the STRUCTURE program revealed the clustering of eight populations from Argentina (
Mytilus platensis
) and the clustering of the sample from Ushuaia with
M. chilensis
from Chile. All individuals in the Puerto Madryn (Argentina) sample were identified as
M. platensis
×
M. galloprovincialis
F2 (88.89%) hybrids, except one that was classified as Mediterranean
M. galloprovincialis
. No F1 hybrids were observed.
Conclusions
We demonstrate that
M. platensis
(or
Mytilus edulis platensis
) and
M. chilensis
are distinct native taxa in South America, which indicates that the evolutionary histories of
Mytilus
taxa along the Atlantic and Pacific coasts differ.
M. platensis
is endangered by hybridization with
M. galloprovincialis
that was introduced from Europe into the Puerto Madryn area in Argentina, presumably by accidental introduction via ship traffic. We confirm the occurrence of a native
M. chilensis
population in southern Argentina on the coast of Patagonia.
Journal Article
Lipophilic Toxins in Chile: History, Producers and Impacts
2022
A variety of microalgal species produce lipophilic toxins (LT) that are accumulated by filter-feeding bivalves. Their negative impacts on human health and shellfish exploitation are determined by toxic potential of the local strains and toxin biotransformations by exploited bivalve species. Chile has become, in a decade, the world’s major exporter of mussels (Mytilus chilensis) and scallops (Argopecten purpuratus) and has implemented toxin testing according to importing countries’ demands. Species of the Dinophysis acuminata complex and Protoceratium reticulatum are the most widespread and abundant LT producers in Chile. Dominant D. acuminata strains, notwithstanding, unlike most strains in Europe rich in okadaic acid (OA), produce only pectenotoxins, with no impact on human health. Dinophysis acuta, suspected to be the main cause of diarrhetic shellfish poisoning outbreaks, is found in the two southernmost regions of Chile, and has apparently shifted poleward. Mouse bioassay (MBA) is the official method to control shellfish safety for the national market. Positive results from mouse tests to mixtures of toxins and other compounds only toxic by intraperitoneal injection, including already deregulated toxins (PTXs), force unnecessary harvesting bans, and hinder progress in the identification of emerging toxins. Here, 50 years of LST events in Chile, and current knowledge of their sources, accumulation and effects, are reviewed. Improvements of monitoring practices are suggested, and strategies to face new challenges and answer the main questions are proposed.
Journal Article
Uncovering the Complex Transcriptome Response of Mytilus chilensis against Saxitoxin: Implications of Harmful Algal Blooms on Mussel Populations
by
Gallardo-Escárate, Cristian
,
Detree, Camille
,
Núñez-Acuña, Gustavo
in
Alexandrium
,
Alexandrium catenella
,
Algae
2016
Saxitoxin (STX), a principal phycotoxin contributing to paralytic shellfish poisoning, is largely produced by marine microalgae of the genus Alexandrium. This toxin affects a wide range of species, inducing massive deaths in fish and other marine species. However, marine bivalves can resist and accumulate paralytic shellfish poisons. Despite numerous studies on the impact of STX in marine bivalves, knowledge regarding STX recognition at molecular level by benthic species remains scarce. Therefore, the aim of this study was to identify novel genes that interact with STX in the Chilean mussel Mytilus chilensis. For this, RNA-seq and RT-qPCR approaches were used to evaluate the transcriptomic response of M. chilensis to a purified STX as well as in vivo Alexandrium catenella exposure. Approximately 800 million reads were assembled, generating 138,883 contigs that were blasted against the UniProt Mollusca database. Pattern Recognition Receptors (PRRs) involved in mussel immunity, such as Toll-like receptors, tumor necrosis factor receptors, and scavenger-like receptors were found to be strongly upregulated at 8 and 16 h post-STX injection. These results suggest an involvement of PRRs in the response to STX, as well as identifying potential, novel STX-interacting receptors in this Chilean mussel. This study is the first transcriptomic overview of the STX-response in the edible species M. chilensis. However, the most significant contribution of this work is the identification of immune receptors and pathways potentially involved in the recognition and defense against STX's toxicity and its impact of harmful algae blooms on wild and cultivated mussel populations.
Journal Article
The Mytilus chilensis Steamer-like Element-1 Retrotransposon Antisense mRNA Harbors an Internal Ribosome Entry Site That Is Modulated by hnRNPK
by
Ahumada-Marchant, Constanza
,
Fernández-García, Leandro
,
Lobos-Ávila, Pablo
in
5' Untranslated Regions
,
Animals
,
Antisense RNA
2024
LTR-retrotransposons are transposable elements characterized by the presence of long terminal repeats (LTRs) directly flanking an internal coding region. They share genome organization and replication strategies with retroviruses. Steamer-like Element-1 (MchSLE-1) is an LTR-retrotransposon identified in the genome of the Chilean blue mussel Mytilus chilensis. MchSLE-1 is transcribed; however, whether its RNA is also translated and the mechanism underlying such translation remain to be elucidated. Here, we characterize the MchSLE-1 translation mechanism. We found that the MchSLE-1 5′ and 3′LTRs command transcription of sense and antisense RNAs, respectively. Using luciferase reporters commanded by the untranslated regions (UTRs) of MchSLE-1, we found that in vitro 5′UTR sense is unable to initiate translation, whereas the antisense 5′UTR initiates translation even when the eIF4E-eIF4G interaction was disrupted, suggesting the presence of an internal ribosomal entry site (IRES). The antisense 5′UTR IRES activity was tested using bicistronic reporters. The antisense 5′UTR has IRES activity only when the mRNA is transcribed in the nucleus, suggesting that nuclear RNA-binding proteins are required to modulate its activity. Indeed, heterogeneous nuclear ribonucleoprotein K (hnRNPK) was identified as an IRES trans-acting factor (ITAF) of the MchSLE-1 IRES. To our knowledge, this is the first report describing an IRES in an antisense mRNA derived from a mussel LTR-retrotransposon.
Journal Article
The Mediterranean Mussel Mytilus galloprovincialis (Mollusca: Bivalvia) in Chile: Distribution and Genetic Structure of a Recently Introduced Invasive Marine Species
by
Gardner, Jonathan P. A.
,
Oyarzún, Pablo A.
,
Nuñez, José J.
in
biodiversity
,
bioinvasion
,
blue mussels
2024
The genetic characteristics of invasive species have a significant impact on their ability to establish and spread. The blue mussel (Mytilus galloprovincialis), native to the Mediterranean Sea, is a leading invasive species of intertidal coasts throughout much of the world. Here, we used mitochondrial DNA sequence data to investigate the genetic diversity and phylogeographic structure of invasive (M. galloprovincialis) versus native (Mytilus chilensis) populations of blue mussels in Chile. We evaluated whether genetic diversity in invasive populations could be explained by the genetic characteristics of the native sources from which they might be derived. A phylogenetic analysis confirmed two lineages of the invasive M. galloprovincialis, i.e., the NW Atlantic and the Mediterranean lineages. We found no evidence of genetic structure in the invasive range of M. galloprovincialis in Chile, most probably because of its recent arrival. We did, however, detect a spatial mixture of both M. galloprovincialis lineages at sampling locations along the Chilean coast, giving rise to higher levels of genetic diversity in some areas compared to the population of native M. chilensis. The coastal area of the invasion is still small in extent (~100 km on either side of two large ports), which supports the hypothesis of a recent introduction. Further expansion of the distribution range of M. galloprovincialis may be limited to the north by increasing water temperatures and to the south by a natural biogeographic break that may slow or perhaps stop its spread. The use of internal borders as a tool to minimise or prevent M. galloprovincialis spread is therefore a genuine management option in Chile but needs to be implemented rapidly.
Journal Article