Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
6,587 result(s) for "NF-kappa B - immunology"
Sort by:
Chronic inflammation induces telomere dysfunction and accelerates ageing in mice
Chronic inflammation is associated with normal and pathological ageing. Here we show that chronic, progressive low-grade inflammation induced by knockout of the nfkb1 subunit of the transcription factor NF-κB induces premature ageing in mice. We also show that these mice have reduced regeneration in liver and gut. nfkb1 −/− fibroblasts exhibit aggravated cell senescence because of an enhanced autocrine and paracrine feedback through NF-κB, COX-2 and ROS, which stabilizes DNA damage. Preferential accumulation of telomere-dysfunctional senescent cells in nfkb1 −/− tissues is blocked by anti-inflammatory or antioxidant treatment of mice, and this rescues tissue regenerative potential. Frequencies of senescent cells in liver and intestinal crypts quantitatively predict mean and maximum lifespan in both short- and long-lived mice cohorts. These data indicate that systemic chronic inflammation can accelerate ageing via ROS-mediated exacerbation of telomere dysfunction and cell senescence in the absence of any other genetic or environmental factor. Many age-related diseases are associated with chronic inflammation. Here Jurk et al . use a mouse model of chronic, low-grade inflammation to support a model by which such inflammation promotes a vicious cycle of oxidative stress, telomere dysfunction and cell senescence that accelerates the ageing process.
Clinical and Immunological Phenotype of Patients With Primary Immunodeficiency Due to Damaging Mutations in NFKB2
Non-canonical NF-κB-pathway signaling is integral in immunoregulation. Heterozygous mutations in have recently been established as a molecular cause of common variable immunodeficiency (CVID) and DAVID-syndrome, a rare condition combining deficiency of anterior pituitary hormone with CVID. Here, we investigate 15 previously unreported patients with primary immunodeficiency (PID) from eleven unrelated families with heterozygous -mutations including eight patients with the common p.Arg853 nonsense mutation and five patients harboring unique novel C-terminal truncating mutations. In addition, we describe the clinical phenotype of two patients with proximal truncating mutations. Cohort analysis extended to all 35 previously published -cases revealed occurrence of early-onset PID in 46/50 patients (mean age of onset 5.9 years, median 4.0 years). ACTH-deficiency occurred in 44%. Three mutation carriers have deceased, four developed malignancies. Only two mutation carriers were clinically asymptomatic. In contrast to typical CVID, most patients suffered from early-onset and severe disease manifestations, including clinical signs of T cell dysfunction e.g., chronic-viral or opportunistic infections. In addition, 80% of patients suffered from (predominately T cell mediated) autoimmune (AI) phenomena (alopecia > various lymphocytic organ-infiltration > diarrhea > arthritis > AI-cytopenia). Unlike in other forms of CVID, auto-antibodies or lymphoproliferation were not common hallmarks of disease. Immunophenotyping showed largely normal or even increased quantities of naïve and memory CD4 or CD8 T-cells and normal T-cell proliferation. NK-cell number and function were also normal. In contrast, impaired B-cell differentiation and hypogammaglobinemia were consistent features of -associated disease. In addition, an array of lymphocyte subpopulations, such as regulatory T cell, Th17-, cTFH-, NKT-, and MAIT-cell numbers were decreased. We conclude that heterozygous damaging mutations in represent a distinct PID entity exceeding the usual clinical spectrum of CVID. Impairment of the non-canonical NF-κB pathways affects function and differentiation of numerous lymphocyte-subpopulations and thus causes a heterogeneous, more severe form of PID phenotype with early-onset. Further characteristic features are multifaceted, primarily T cell-mediated autoimmunity, such as alopecia, lymphocytic organ infiltration, and in addition frequently ACTH-deficiency.
Guanine nucleotide exchange factor RABGEF1 regulates keratinocyte-intrinsic signaling to maintain skin homeostasis
Epidermal keratinocytes form a structural and immune barrier that is essential for skin homeostasis. However, the mechanisms that regulate epidermal barrier function are incompletely understood. Here we have found that keratinocyte-specific deletion of the gene encoding RAB guanine nucleotide exchange factor 1 (RABGEF1, also known as RABEX-5) severely impairs epidermal barrier function in mice and induces an allergic cutaneous and systemic phenotype. RABGEF1-deficient keratinocytes exhibited aberrant activation of the intrinsic IL-1R/MYD88/NF-κB signaling pathway and MYD88-dependent abnormalities in expression of structural proteins that contribute to skin barrier function. Moreover, ablation of MYD88 signaling in RABGEF1-deficient keratinocytes or deletion of Il1r1 restored skin homeostasis and prevented development of skin inflammation. We further demonstrated that epidermal RABGEF1 expression is reduced in skin lesions of humans diagnosed with either atopic dermatitis or allergic contact dermatitis as well as in an inducible mouse model of allergic dermatitis. Our findings reveal a key role for RABGEF1 in dampening keratinocyte-intrinsic MYD88 signaling and sustaining epidermal barrier function in mice, and suggest that dysregulation of RABGEF1 expression may contribute to epidermal barrier dysfunction in allergic skin disorders in mice and humans. Thus, RABGEF1-mediated regulation of IL-1R/MYD88 signaling might represent a potential therapeutic target.
The non-canonical NF-κB pathway in immunity and inflammation
Key Points NF-κB (nuclear factor-κB) activation is mediated by two main signalling pathways, the canonical and non-canonical pathways, which differ in both signalling mechanisms and biological functions. The canonical NF-κB pathway is stimulated by ligands of diverse immune receptors and involves the rapid and transient activation of IκB kinase (IKK), IKK-mediated IκBα phosphorylation, and subsequent IκBα degradation and nuclear translocation of canonical NF-κB members, including p50, RELA and c-REL. The non-canonical NF-κB pathway selectively responds to signals from a subset of tumour necrosis factor receptor (TNFR) superfamily members and involves slow and persistent activation of NF-κB-inducing kinase (NIK), NIK-mediated p100 phosphorylation, and subsequent p100 processing and nuclear translocation of non-canonical NF-κB members, including p52 and RELB. The non-canonical NF-κB pathway is tightly controlled by ubiquitin-dependent degradation of NIK mediated by an E3 ubiquitin ligase complex composed of cIAP family members, TNFR-associated factor 2 (TRAF2) and TRAF3; activation of non-canonical NF-κB involves signal-induced disruption of the cIAP E3 complex, typically via degradation of TRAF3, and accumulation of NIK. The non-canonical NF-κB pathway regulates important aspects of immune functions, including lymphoid organ development, the cross-priming function of dendritic cells, B cell survival and germinal centre reactions, generation and maintenance of effector and memory T cells, and antiviral innate immunity. The non-canonical NF-κB pathway is involved in various inflammatory diseases, such as rheumatoid arthritis, systemic lupus erythematosus, kidney inflammation and injury, metabolic inflammation, and central nervous system inflammation. Defects in the non-canonical pathway of NF-κB activation are associated with severe immune deficiencies, and aberrant activation of this pathway can cause autoimmune and inflammatory diseases. Here, the author investigates the activation, signalling mechanisms and the biological function of the non-canonical NF-κB pathway. The nuclear factor-κB (NF-κB) family of transcription factors is activated by canonical and non-canonical signalling pathways, which differ in both signalling components and biological functions. Recent studies have revealed important roles for the non-canonical NF-κB pathway in regulating different aspects of immune functions. Defects in non-canonical NF-κB signalling are associated with severe immune deficiencies, whereas dysregulated activation of this pathway contributes to the pathogenesis of various autoimmune and inflammatory diseases. Here we review the signalling mechanisms and the biological function of the non-canonical NF-κB pathway. We also discuss recent progress in elucidating the molecular mechanisms regulating non-canonical NF-κB pathway activation, which may provide new opportunities for therapeutic strategies.
Structure-Activity Relationships of Sulfated Glycoproteins from Codium fragile on Nitric Oxide Releasing Capacity from RAW264.7 Cells
The effects of sulfate and protein contents as well as molecular weights of the sulfated glycoproteins (NF 2 ) from Codium fragile on the immunomodulation were systematically investigated. The obtained NF 2 derivatives displayed various amounts of proteins (2.3–8.7 %) and sulfates (4.3–8.1 %) as well as different molecular weights (47.3–128.0 × 10 3  g/mol). NF 2 was not able to stimulate RAW264.7 cells to release NO without its protein moiety, which was essential to activate NF-κB pathway through the degradation and phosphorylation of IκB-α and the subsequent translocation of p65/p50 complex in the cell nucleus. In addition, the proteins in NF 2 were required to trigger MAPK pathway for the phosphorylation of ERK1/2, p38, and JNK1/2 as well as the nuclear translocation of c-JUN and c-FOS. However, the protein moiety itself could not activate RAW264.7 cells, thus the complex formation of the polysaccharide and protein moieties in NF 2 was pivotal to stimulate macrophage cells.
Periostin in inflammation and allergy
We found for the first time that IL-4 and IL-13, signature type 2 cytokines, are able to induce periostin expression. We and others have subsequently shown that periostin is highly expressed in chronic inflammatory diseases―asthma, atopic dermatitis, eosinophilc chronic sinusitis/chronic rhinosinusitis with nasal polyp, and allergic conjunctivitis—and that periostin plays important roles in the pathogenesis of these diseases. The epithelial/mesenchymal interaction via periostin is important for the onset of allergic inflammation, in which periostin derived from fibroblasts acts on epithelial cells or fibroblasts, activating their NF-κB. Moreover, the immune cell/non-immune cell interaction via periostin may be also involved. Now the significance of periostin has been expanded into other inflammatory or fibrotic diseases such as scleroderma and pulmonary fibrosis. The cross-talk of periostin with TGF-β or pro-inflammatory cytokines is important for the underlying mechanism of these diseases. Because of its pathogenic importance and broad expression, diagnostics or therapeutic drugs can be potentially developed to target periostin as a means of treating these diseases.
Tissue damage from neutrophil-induced oxidative stress in COVID-19
The high neutrophil to lymphocyte ratio observed in critically ill patients with COVID-19 is associated with excessive levels of reactive oxygen species (ROS), which promote a cascade of biological events that drive pathological host responses. ROS induce tissue damage, thrombosis and red blood cell dysfunction, which contribute to COVID-19 disease severity. We suggest that free radical scavengers could be beneficial for the most vulnerable patients.In this Comment article, Becker and colleagues consider how the excessive release of reactive oxygen species by neutrophils may perpetuate red blood cell dysfunction, thrombosis and tissue damage in severe cases of COVID-19.
Ectopic lymphoid structures function as microniches for tumor progenitor cells in hepatocellular carcinoma
Ectopic lymphoid structures develop at sites of chronic inflammation and are generally thought to be beneficial in the control of cancer. Pikarsky and colleagues show that these structures can instead nurture liver tumor progenitor cells. Ectopic lymphoid-like structures (ELSs) are often observed in cancer, yet their function is obscure. Although ELSs signify good prognosis in certain malignancies, we found that hepatic ELSs indicated poor prognosis for hepatocellular carcinoma (HCC). We studied an HCC mouse model that displayed abundant ELSs and found that they constituted immunopathological microniches wherein malignant hepatocyte progenitor cells appeared and thrived in a complex cellular and cytokine milieu until gaining self-sufficiency. The egress of progenitor cells and tumor formation were associated with the autocrine production of cytokines previously provided by the niche. ELSs developed via cooperation between the innate immune system and adaptive immune system, an event facilitated by activation of the transcription factor NF-κB and abolished by depletion of T cells. Such aberrant immunological foci might represent new targets for cancer therapy.
Molecular impact of selective NFKB1 and NFKB2 signaling on DLBCL phenotype
Diffuse large B-cell lymphoma (DLBCL) has been categorized into two molecular subtypes that have prognostic significance, namely germinal center B-cell like (GCB) and activated B-cell like (ABC). Although ABC-DLBCL has been associated with NF-κB activation, the relationships between activation of specific NF-κB signals and DLBCL phenotype remain unclear. Application of novel gene expression classifiers identified two new DLBCL categories characterized by selective p100 (NF-κB2) and p105 (NF-κB1) signaling. Interestingly, our molecular studies showed that p105 signaling is predominantly associated with GCB subtype and histone mutations. Conversely, most tumors with p100 signaling displayed ABC phenotype and harbored ABC-associated mutations in genes such as MYD88 and PIM1 . In vitro , MYD88 L265P mutation promoted p100 signaling through TAK1/IKKα and GSK3/Fbxw7a pathways, suggesting a novel role for this protein as an upstream regulator of p100. p100 signaling was engaged during activation of normal B cells, suggesting p100’s role in ABC phenotype development. Additionally, silencing p100 in ABC-DLBCL cells resulted in a GCB-like phenotype, with suppression of Blimp, IRF4 and XBP1 and upregulation of BCL6, whereas introduction of p52 or p100 into GC cells resulted in differentiation toward an ABC-like phenotype. Together, these findings identify specific roles for p100 and p105 signaling in defining DLBCL molecular subtypes and posit MYD88/p100 signaling as a regulator for B-cell activation.
Ciprofloxacin and levofloxacin attenuate microglia inflammatory response via TLR4/NF-kB pathway
Background Neuroinflammation is the response of the central nervous system to events that interfere with tissue homeostasis and represents a common denominator in virtually all neurological diseases. Activation of microglia, the principal immune effector cells of the brain, contributes to neuronal injury by release of neurotoxic products. Toll-like receptor 4 (TLR4), expressed on the surface of microglia, plays an important role in mediating lipopolysaccharide (LPS)-induced microglia activation and inflammatory responses. We have previously shown that curcumin and some of its analogues harboring an α,β-unsaturated 1,3-diketone moiety, able to coordinate the magnesium ion, can interfere with LPS-mediated TLR4–myeloid differentiation protein-2 (MD-2) signaling. Fluoroquinolone (FQ) antibiotics are compounds that contain a keto-carbonyl group that binds divalent ions, including magnesium. In addition to their antimicrobial activity, FQs are endowed with immunomodulatory properties, but the mechanism underlying their anti-inflammatory activity remains to be defined. The aim of the current study was to elucidate the molecular mechanism of these compounds in the TLR4/NF-κB inflammatory signaling pathway. Methods The putative binding mode of five FQs [ciprofloxacin (CPFX), levofloxacin (LVFX), moxifloxacin, ofloxacin, and delafloxacin] to TLR4–MD-2 was determined using molecular docking simulations. The effect of CPFX and LVFX on LPS-induced release of IL-1β and TNF-α and NF-κB activation was investigated in primary microglia by ELISA and fluorescence staining. The interaction of CPFX and LVFX with TLR4–MD-2 complex was assessed by immunoprecipitation followed by Western blotting using Ba/F3 cells. Results CPFX and LVFX bound to the hydrophobic region of the MD-2 pocket and inhibited LPS-induced secretion of pro-inflammatory cytokines and activation of NF-κB in primary microglia. Furthermore, these FQs diminished the binding of LPS to TLR4–MD-2 complex and decreased the resulting TLR4–MD-2 dimerization in Ba/F3 cells. Conclusions These results provide new insight into the mechanism of the anti-inflammatory activity of CPFX and LVFX, which involves, at least in part, the activation of TLR4/NF-κB signaling pathway. Our findings might facilitate the development of new molecules directed at the TLR4–MD-2 complex, a potential key target for controlling neuroinflammation.