Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
33 result(s) for "NK Cell Lectin-Like Receptor Subfamily D - analysis"
Sort by:
The inhibitory receptor CD94/NKG2A on CD8+ tumor-infiltrating lymphocytes in colorectal cancer: a promising new druggable immune checkpoint in the context of HLAE/β2m overexpression
We previously demonstrated that HLA-E/β2m overexpression by tumor cells in colorectal cancers is associated with an unfavorable prognosis. However, the expression of its specific receptor CD94/NKG2 by intraepithelial tumor-infiltrating lymphocytes, their exact phenotype and function, as well as the relation with the molecular status of colorectal cancer and prognosis remain unknown. Based on a retrospective cohort of 234 colorectal cancer patients, we assessed the expression of HLA-E, β2m, CD94, CD8, and NKp46 by immunohistochemistry on tissue microarray. The expression profile of HLA-E/β2m on tumor cells and the density of tumor-infiltrating lymphocytes were correlated to the clinicopathological and molecular features (Microsatellite status, BRAF and RAS mutations). Then, from the primary tumors of 27 prospective colorectal cancers, we characterized by multiparameter flow cytometry the nature (T and/or NK cells) and the co-expression of the inhibitory NKG2A or activating NKG2C chain of ex vivo isolated CD94 + tumor-infiltrating lymphocytes. Their biological function was determined using an in vitro redirected cytolytic activity assay. Our results showed that HLA-E/β2m was preferentially overexpressed in microsatellite instable tumors compared with microsatellite stable ones (45% vs. 19%, respectively, p  = 0.0001), irrespective of the RAS or BRAF mutational status. However, HLA-E/β2m + colorectal cancers were significantly enriched in CD94 + intraepithelial tumor-infiltrating lymphocytes in microsatellite instable as well as in microsatellite stable tumors. Those CD94 + tumor-infiltrating lymphocytes mostly corresponded to CD8 + αβ T cells, and  to a lesser extent to NK cells, and mainly co-expressed a functional inhibitory NKG2A chain. Finally, a high number of CD94 + intraepithelial tumor-infiltrating lymphocytes in close contact with tumor cells was independently associated with a worse overall survival. In conclusion, these findings strongly suggest that HLA-E/β2m–CD94/NKG2A represents a new druggable inhibitory immune checkpoint, preferentially expressed in microsatellite instable tumors, but also in a subgroup of microsatellite stable tumors, leading to a new opportunity in colorectal cancer immunotherapies.
Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues
Innate lymphoid cells are cytokine-producing cells that contribute to tissue homeostasis. Spits and colleagues identify a human innate cell population that expresses T-bet and IFN-γ and is prevalent in Crohn's disease. Innate lymphoid cells (ILCs) are effectors of innate immunity and regulators of tissue modeling. Recently identified ILC populations have a cytokine expression pattern that resembles that of the helper T cell subsets T H 2, T H 17 and T H 22. Here we describe a distinct ILC subset similar to T H 1 cells, which we call 'ILC1'. ILC1 cells expressed the transcription factor T-bet and responded to interleukin 12 (IL-12) by producing interferon-γ (IFN-γ). ILC1 cells were distinct from natural killer (NK) cells as they lacked perforin, granzyme B and the NK cell markers CD56, CD16 and CD94, and could develop from RORγt + ILC3 under the influence of IL-12. The frequency of the ILC1 subset was much higher in inflamed intestine of people with Crohn's disease, which indicated a role for these IFN-γ-producing ILC1 cells in the pathogenesis of gut mucosal inflammation.
Short-Lived Cages Restrict Protein Diffusion in the Plasma Membrane
The plasma membrane is a heterogeneous environment characterized by anomalous diffusion and the presence of microdomains that are molecularly distinct from the bulk membrane. Using single particle tracking of the C-type lectin CD93, we have identified for the first time the transient trapping of transmembrane proteins in cage-like microdomains which restrict protein diffusion. These cages are stabilized by actin-dependent confinement regions, but are separate structures with sizes and lifespans uncorrelated to those of the underlying actin corral. These membrane cages require cholesterol for their strength and stability, with cholesterol depletion decreasing both. Despite this, cages are much larger in size and are longer lived than lipid rafts, suggesting instead that cholesterol-dependent effects on membrane fluidity or molecular packing play a role in cage formation. This diffusional compartment in the plasma membrane has characteristics of both a diffusional barrier and a membrane microdomain, with a size and lifespan intermediate between short-lived microdomains such as lipid rafts and long-lasting diffusional barriers created by the actin cytoskeleton.
CD3+/CD19+-depleted grafts in HLA-matched allogeneic peripheral blood stem cell transplantation lead to early NK cell cytolytic responses and reduced inhibitory activity of NKG2A
Natural killer (NK) cells have an important function in the anti-tumor response early after stem cell transplantation (SCT). As part of a prospective randomized phase III study, directly comparing the use of CD3 + /CD19 + -depleted peripheral blood stem cell (PBSC) harvests with CD34 + -selected PBSC harvests in allogeneic human leukocyte antigen-matched SCT, we here show that the use of CD3 + /CD19 + -depleted PBSC grafts leads to early NK cell repopulation and reconstitution of the CD56 dim and CD56 bright NK cell subsets, with concomitant high cytolytic capacity. In the CD34 group, this process took significantly longer. Moreover, in the CD3/19 group after reconstitution, a higher percentage of killer immunoglobulin-like receptor-positive NK cells was found. Although similar percentages of CD94-positive NK cells were found in both groups, in the CD34 group, almost all expressed the inhibitory CD94:NKG2A complex, whereas in the CD3/19 group, the inhibitory CD94:NKG2A and the activating CD94:NKG2C complex were equally distributed. This preferential development of NKG2C-expressing NK cells in the CD3/19 group was paralleled by a loss of NKG2A-mediated inhibition of NK cell degranulation. These results show that the use of CD3 + /CD19 + -depleted grafts facilitates strong NK cell cytolytic responses directly after SCT, and the rapid emergence of an NK cell receptor phenotype that is more prone to activation.
GRP-induced up-regulation of Hsp72 promotes CD16+/94+ natural killer cell binding to colon cancer cells causing tumor cell cytolysis
Gastrin-releasing peptide (GRP) and its receptor (GRPR) are not normally expressed by epithelial cells lining the adult human colon. However post malignant transformation both GRP and its receptor are aberrantly expressed in the colon where we have previously shown they act to retard metastasis by enhancing tumor cell attachment to the extracellular matrix. In the present study, we show that GRP signaling via its cognate receptor when both are aberrantly expressed in human colon cancer cells causes heat shock protein 72 (Hsp72) to be expressed. We show that GRP/GRPR induces expression of Hsp72 by signaling via focal adhesion kinase. When expressed, Hsp72 promotes the binding of CD16+ and CD94+ natural killer cells, resulting in tumor cell cytolysis. These findings demonstrate the presence of a novel mechanism whereby aberrantly expressed GRP/GRPR in human colorectal cancer attenuates tumor progression and may promote a favorable outcome.
Hantaan virus-derived peptides that stabilize HLA-E could abrogate inhibition of CD56dimNKG2A+ NK cells
NK cells could participate in the pathogenesis process of virus infectious diseases through the inhibitory receptor CD94/NKG2A interacting with HLA-E/virus-derived peptide complex. However, the effects and mechanisms of NKG2A-HLA-E axis-mediated NK cell responses in hemorrhagic fever with renal syndrome (HFRS) caused by Hantaan virus (HTNV) infection remain unclear. Single-cell RNA sequencing and flow cytometry were employed to analyze the phenotype and function of different NK cell subsets in HFRS patients. The K562/HLA-E cells binding assay was used for peptide affinity detection. The binding capacity of HLA-E/peptide-CD94/NKG2A was detected using ligand-receptor binding assay and tetramer staining. The cytotoxicity assay of NK cells against peptide-pulsed K562/HLA-E cells was conducted for functional evaluation. In this study, CD56 dim CD16 + NKG2A + NK cells were the main subset in HFRS patients, showing activation and proliferation phenotypes with NKG2C - CD57 - and the ability to secrete tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ) and cytotoxic mediators. Notably, none of the four identified HTNV epitopes presented by HLA-E could be recognized by CD94/NKG2A on CD56 dim NKG2A + NK cells. Furthermore, the subset of CD56 dim NKG2A + NK cells showed the enhanced cytolytic capacity against HTNV peptide pulsed K562/HLA-E cells ex vivo . Taken together, the findings demonstrate that HTNV-derived peptides presented by HLA-E could “abrogate” the inhibition of CD56 dim NKG2A + NK cells, contributing to the antiviral immune response in HFRS patients.
Dissection of the NKG2C NK cell response against Puumala Orthohantavirus
Infections with the Puumala orthohantavirus (PUUV) in humans may cause hemorrhagic fever with renal syndrome (HFRS), known as nephropathia epidemica (NE), which is associated with acute renal failure in severe cases. In response to PUUV-infections, a subset of potent antiviral NKG2C+ NK cells expand, whose role in virus defence and pathogenesis of NE is unclear. NKG2C+ NK cell proliferation is mediated by binding of NKG2C/CD94 to HLA-E on infected cells. The proliferation and activation of NKG2C+ NK cells via the NKG2C/HLA-E axis is affected by different NKG2C (NKG2Cwt/del) and HLA-E (HLA-E*0101/0103) alleles, which naturally occur in the human host. Homozygous (NKG2Cdel/del) and heterozygous (NKG2Cwt/del) deletions of the NKG2C receptor results in an impaired NKG2C/CD94 mediated proliferation and activation of NKG2C+ cells. We therefore analyzed the PUUV-mediated NKG2C+ NK cell responses and the impact of different NKG2C and HLA-E alleles in NE patients. NKG2C+ NK cell expansion and effector functions in PUUV-infected cells were investigated using flow cytometry and it was shown that PUUV-infected endothelial cells led to a NKG2C/CD94 mediated NKG2C+ NK cell activation and expansion, dependent on the HLA-G-mediated upregulation of HLA-E. Furthermore, the NKG2Cdel and HLA-E*0101/0103 alleles were determined in 130 NE patients and 130 matched controls, and it was shown that in NE patients the NKG2Cwt/del allele was significantly overrepresented, compared to the NKG2Cwt/wt variant (p = 0.01). In addition, in vitro analysis revealed that NKG2Cwt/del NK cells exhibited on overall a lower proliferation (p = 0.002) and lower IFNγ expression (p = 0.004) than NKG2Cwt/wt NK cells. Our results corroborate the substantial impact of the NKG2C/HLA-E axis on PUUV-specific NK cell responses. A weak NKG2C+ NK cell response, as reflected by NKG2Cwt/del variant, may be associated with a higher risk for a severe hantavirus infections.
NK cell receptor and ligand composition influences the clearance of SARS-CoV-2
To explore how the immune system controls clearance of SARS-CoV-2, we used a single-cell, mass cytometry-based proteomics platform to profile the immune systems of 21 patients who had recovered from SARS-CoV-2 infection without need for admission to an intensive care unit or for mechanical ventilation. We focused on receptors involved in interactions between immune cells and virus-infected cells. We found that the diversity of receptor repertoires on natural killer (NK) cells was negatively correlated with the viral clearance rate. In addition, NK subsets expressing the receptor DNAM1 were increased in patients who more rapidly recovered from infection. Ex vivo functional studies revealed that NK subpopulations with high DNAM1 expression had cytolytic activities in response to target cell stimulation. We also found that SARS-CoV-2 infection induced the expression of CD155 and nectin-4, ligands of DNAM1 and its paired coinhibitory receptor TIGIT, which counterbalanced the cytolytic activities of NK cells. Collectively, our results link the cytolytic immune responses of NK cells to the clearance of SARS-CoV-2 and show that the DNAM1 pathway modulates host-pathogen interactions during SARS-CoV-2 infection.
IL-12–producing monocytes and HLA-E control HCMV-driven NKG2C+ NK cell expansion
Human cytomegalovirus (HCMV) infection is the most common cause of congenital viral infections and a major source of morbidity and mortality after organ transplantation. NK cells are pivotal effector cells in the innate defense against CMV. Recently, hallmarks of adaptive responses, such as memory-like features, have been recognized in NK cells. HCMV infection elicits the expansion of an NK cell subset carrying an activating receptor heterodimer, comprising CD94 and NKG2C (CD94/NKG2C), a response that resembles the clonal expansion of adaptive immune cells. Here, we determined that expansion of this NKG2C(+) subset and general NK cell recovery rely on signals derived from CD14(+) monocytes. In a coculture system, a subset of CD14(+) cells with inflammatory monocyte features produced IL-12 in response to HCMV-infected fibroblasts, and neutralization of IL-12 in this model substantially reduced CD25 upregulation and NKG2C(+) subset expansion. Finally, blockade of CD94/NKG2C on NK cells or silencing of the cognate ligand HLA-E in infected fibroblasts greatly impaired expansion of NKG2C(+) NK cells. Together, our results reveal that IL-12, CD14(+) cells, and the CD94/NKG2C/HLA-E axis are critical for the expansion of NKG2C(+) NK cells in response to HCMV infection. Moreover, strategies targeting the NKG2C(+) NK cell subset have the potential to be exploited in NK cell-based intervention strategies against viral infections and cancer.