Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
75,343
result(s) for
"Neoplasms, Experimental"
Sort by:
Oral administration of bovine milk-derived extracellular vesicles induces senescence in the primary tumor but accelerates cancer metastasis
2021
The concept that extracellular vesicles (EVs) from the diet can be absorbed by the intestinal tract of the consuming organism, be bioavailable in various organs, and in-turn exert phenotypic changes is highly debatable. Here, we isolate EVs from both raw and commercial bovine milk and characterize them by electron microscopy, nanoparticle tracking analysis, western blotting, quantitative proteomics and small RNA sequencing analysis. Orally administered bovine milk-derived EVs survive the harsh degrading conditions of the gut, in mice, and is subsequently detected in multiple organs. Milk-derived EVs orally administered to mice implanted with colorectal and breast cancer cells reduce the primary tumor burden. Intriguingly, despite the reduction in primary tumor growth, milk-derived EVs accelerate metastasis in breast and pancreatic cancer mouse models. Proteomic and biochemical analysis reveal the induction of senescence and epithelial-to-mesenchymal transition in cancer cells upon treatment with milk-derived EVs. Timing of EV administration is critical as oral administration after resection of the primary tumor reverses the pro-metastatic effects of milk-derived EVs in breast cancer models. Taken together, our study provides context-based and opposing roles of milk-derived EVs as metastasis inducers and suppressors.
Dietary extracellular vesicles (EVs) could potentially be absorbed by the intestinal tract of the host and exert multiple phenotypic changes. Here, the authors isolate and characterize EVs from raw and commercial bovine milk and show orally administered EVs to have a context specific role in promoting or suppressing primary tumor growth and metastasis in multiple mouse tumor models.
Journal Article
Human colon mucosal biofilms from healthy or colon cancer hosts are carcinogenic
2019
Mucus-invasive bacterial biofilms are identified on the colon mucosa of approximately 50% of colorectal cancer (CRC) patients and approximately 13% of healthy subjects. Here, we test the hypothesis that human colon biofilms comprise microbial communities that are carcinogenic in CRC mouse models. Homogenates of human biofilm-positive colon mucosa were prepared from tumor patients (tumor and paired normal tissues from surgical resections) or biofilm-positive biopsies from healthy individuals undergoing screening colonoscopy; homogenates of biofilm-negative colon biopsies from healthy individuals undergoing screening colonoscopy served as controls. After 12 weeks, biofilm-positive, but not biofilm-negative, human colon mucosal homogenates induced colon tumor formation in 3 mouse colon tumor models (germ-free ApcMinΔ850/+;Il10-/- or ApcMinΔ850/+ and specific pathogen-free ApcMinΔ716/+ mice). Remarkably, biofilm-positive communities from healthy colonoscopy biopsies induced colon inflammation and tumors similarly to biofilm-positive tumor tissues. By 1 week, biofilm-positive human tumor homogenates, but not healthy biopsies, displayed consistent bacterial mucus invasion and biofilm formation in mouse colons. 16S rRNA gene sequencing and RNA-Seq analyses identified compositional and functional microbiota differences between mice colonized with biofilm-positive and biofilm-negative communities. These results suggest human colon mucosal biofilms, whether from tumor hosts or healthy individuals undergoing screening colonoscopy, are carcinogenic in murine models of CRC.
Journal Article
Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance
2015
The role of epithelial-to-mesenchymal transition (EMT) in metastasis is a longstanding source of debate, largely owing to an inability to monitor transient and reversible EMT phenotypes
in vivo
. Here we establish an EMT lineage-tracing system to monitor this process in mice, using a mesenchymal-specific Cre-mediated fluorescent marker switch system in spontaneous breast-to-lung metastasis models. We show that within a predominantly epithelial primary tumour, a small proportion of tumour cells undergo EMT. Notably, lung metastases mainly consist of non-EMT tumour cells that maintain their epithelial phenotype. Inhibiting EMT by overexpressing the microRNA miR-200 does not affect lung metastasis development. However, EMT cells significantly contribute to recurrent lung metastasis formation after chemotherapy. These cells survived cyclophosphamide treatment owing to reduced proliferation, apoptotic tolerance and increased expression of chemoresistance-related genes. Overexpression of miR-200 abrogated this resistance. This study suggests the potential of an EMT-targeting strategy, in conjunction with conventional chemotherapies, for breast cancer treatment.
An epithelial-to-mesenchymal transition (EMT) lineage-tracing system in a mouse model of breast-to-lung metastasis reveals that although some cells undergo EMT in a primary epithelial tumour, the lung metastases mainly arise from cells that have not undergone EMT; in addition, cells that have undergone EMT appear more resistant to chemotherapy.
No requirement for EMT in metastasis
It has been suggested that epithelial-to-mesenchymal transition (EMT), in which epithelial cells depolarize and adopt a fibroblast-like morphology, is a requirement for metastasis to occur. Other studies imply that the importance of EMT relies on cell-culture-based manipulation of EMT regulators. In this issue of
Nature
, two groups present results that suggest that EMT is not a prerequisite for metasasis. Dingcheng Gao and colleagues trace the fate of cells that have undergone EMT in mouse model for breast-to-lung metastasis. They find that although some cells undergo EMT in a primary epithelial tumour, the lung metastases mainly contain cells that have not undergone EMT. However, cells that have undergone EMT appear more resistant to chemotherapy. A microRNA that targets key EMT regulators is shown not to affect metastasis, but to reduce survival of EMT cells following chemotherapy. Raghu Kalluri and colleagues delete Twist or Snail — transcription factors that induce EMT — in a mouse model for pancreatic ductal adenocarcinoma. This leads to an increase in cell proliferation, and a greater sensitivity to chemotherapeutic agent gemcitabine, with no effect on invasion and metastasis.
Journal Article
Patrolling monocytes control tumor metastasis to the lung
2015
The immune system plays an important role in regulating tumor growth and metastasis. Classical monocytes promote tumorigenesis and cancer metastasis, but how nonclassical \"patrolling\" monocytes (PMo) interact with tumors is unknown. Here we show that PMo are enriched in the microvasculature of the lung and reduce tumor metastasis to lung in multiple mouse metastatic tumor models. Nr4a1-deficient mice, which specifically lack PMo, showed increased lung metastasis in vivo. Transfer of Nr4a1-proficient PMo into Nr4a1-deficient mice prevented tumor invasion in the lung. PMo established early interactions with metastasizing tumor cells, scavenged tumor material from the lung vasculature, and promoted natural killer cell recruitment and activation. Thus, PMo contribute to cancer immunosurveillance and may be targets for cancer immunotherapy.
Journal Article
Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion
by
Slusher, Barbara S.
,
Sun, Im-Meng
,
Oh, Min-Hee
in
Acidosis
,
Animals
,
Azo Compounds - pharmacology
2019
The metabolic characteristics of tumors present considerable hurdles to immune cell function and cancer immunotherapy. Using a glutamine antagonist, we metabolically dismantled the immunosuppressive microenvironment of tumors. We demonstrate that glutamine blockade in tumor-bearing mice suppresses oxidative and glycolytic metabolism of cancer cells, leading to decreased hypoxia, acidosis, and nutrient depletion. By contrast, effector T cells responded to glutamine antagonism by markedly up-regulating oxidative metabolism and adopting a long-lived, highly activated phenotype. These divergent changes in cellular metabolism and programming form the basis for potent antitumor responses. Glutamine antagonism therefore exposes a previously undefined difference in metabolic plasticity between cancer cells and effector T cells that can be exploited as a “metabolic checkpoint” for tumor immunotherapy.
Journal Article
Targeting the disordered C terminus of PTP1B with an allosteric inhibitor
by
Tonks, Nicholas K
,
Jensen, Malene Ringkjøbing
,
Gauss, Carla-Maria
in
101/6
,
631/154/556
,
631/45
2014
The allosteric binding of MSI-1436 to the intrinsically disordered C-terminal region of PTP1B promotes a conformational change to generate a compact inactive structure, validating the use of MSI-1436 to inhibit HER2-mediated tumorigenesis.
PTP1B, a validated therapeutic target for diabetes and obesity, has a critical positive role in HER2 signaling in breast tumorigenesis. Efforts to develop therapeutic inhibitors of PTP1B have been frustrated by the chemical properties of the active site. We define a new mechanism of allosteric inhibition that targets the C-terminal, noncatalytic segment of PTP1B. We present what is to our knowledge the first ensemble structure of PTP1B containing this intrinsically disordered segment, within which we identified a binding site for the small-molecule inhibitor MSI-1436. We demonstrate binding to a second site close to the catalytic domain, with cooperative effects between the two sites locking PTP1B in an inactive state. MSI-1436 antagonized HER2 signaling, inhibited tumorigenesis in xenografts and abrogated metastasis in the NDL2 mouse model of breast cancer, validating inhibition of PTP1B as a therapeutic strategy in breast cancer. This new approach to inhibition of PTP1B emphasizes the potential of disordered segments of proteins as specific binding sites for therapeutic small molecules.
Journal Article
Gpr132 sensing of lactate mediates tumor–macrophage interplay to promote breast cancer metastasis
2017
Macrophages are prominent immune cells in the tumor microenvironment that exert potent effects on cancer metastasis. However, the signals and receivers for the tumor–macrophage communication remain enigmatic. Here, we show that G protein-coupled receptor 132 (Gpr132) functions as a key macrophage sensor of the rising lactate in the acidic tumor milieu to mediate the reciprocal interaction between cancer cells and macrophages during breast cancer metastasis. Lactate activates macrophage Gpr132 to promote the alternatively activated macrophage (M2)-like phenotype, which, in turn, facilitates cancer cell adhesion, migration, and invasion. Consequently, Gpr132 deletion reduces M2 macrophages and impedes breast cancer lung metastasis in mice. Clinically, Gpr132 expression positively correlates with M2 macrophages, metastasis, and poor prognosis in patients with breast cancer. These findings uncover the lactate-Gpr132 axis as a driver of breast cancer metastasis by stimulating tumor–macrophage interplay, and reveal potential new therapeutic targets for breast cancer treatment.
Journal Article
Increased vessel perfusion predicts the efficacy of immune checkpoint blockade
2018
Immune checkpoint blockade (ICB) has demonstrated curative potential in several types of cancer, but only for a small number of patients. Thus, the identification of reliable and noninvasive biomarkers for predicting ICB responsiveness is an urgent unmet need. Here, we show that ICB increased tumor vessel perfusion in treatment-sensitive EO771 and MMTV-PyVT breast tumor as well as CT26 and MCA38 colon tumor models, but not in treatment-resistant MCaP0008 and 4T1 breast tumor models. In the sensitive tumor models, the ability of anti-cytotoxic T lymphocyte-associated protein 4 or anti-programmed cell death 1 therapy to increase vessel perfusion strongly correlated with its antitumor efficacy. Moreover, globally enhanced tumor vessel perfusion could be detected by Doppler ultrasonography before changes in tumor size, which predicted final therapeutic efficacy with more than 90% sensitivity and specificity. Mechanistically, CD8+ T cell depletion, IFN-γ neutralization, or implantation of tumors in IFN-γ receptor knockout mice abrogated the vessel perfusion enhancement and antitumor effects of ICB. These results demonstrated that ICB increased vessel perfusion by promoting CD8+ T cell accumulation and IFN-γ production, indicating that increased vessel perfusion reflects the successful activation of antitumor T cell immunity by ICB. Our findings suggest that vessel perfusion can be used as a novel noninvasive indicator for predicting ICB responsiveness.
Journal Article
Long noncoding RNA MALAT1 suppresses breast cancer metastasis
2018
MALAT1 has previously been described as a metastasis-promoting long noncoding RNA (lncRNA). We show here, however, that targeted inactivation of the
Malat1
gene in a transgenic mouse model of breast cancer, without altering the expression of its adjacent genes, promotes lung metastasis, and that this phenotype can be reversed by genetic add-back of
Malat1
. Similarly, knockout of MALAT1 in human breast cancer cells induces their metastatic ability, which is reversed by re-expression of Malat1. Conversely, overexpression of Malat1 suppresses breast cancer metastasis in transgenic, xenograft, and syngeneic models. Mechanistically, the MALAT1 lncRNA binds and inactivates the prometastatic transcription factor TEAD, preventing TEAD from associating with its co-activator YAP and target gene promoters. Moreover, MALAT1 levels inversely correlate with breast cancer progression and metastatic ability. These findings demonstrate that MALAT1 is a metastasis-suppressing lncRNA rather than a metastasis promoter in breast cancer, calling for rectification of the model for this highly abundant and conserved lncRNA.
Targeted inactivation, restoration and overexpression of MALAT1 in multiple in vivo models demonstrate that the lncRNA MALAT1 suppresses breast cancer metastasis through binding and inactivation of the pro-metastatic transcription factor TEAD.
Journal Article
Fatty acid metabolism complements glycolysis in the selective regulatory T cell expansion during tumor growth
by
Faicchia, Deriggio
,
Bonacina, Fabrizia
,
Barnaba, Vincenzo
in
Animal models
,
Animals
,
Biological Sciences
2018
The tumor microenvironment restrains conventional T cell (Tconv) activation while facilitating the expansion of Tregs. Here we showed that Tregs’ advantage in the tumor milieu relies on supplemental energetic routes involving lipid metabolism. In murine models, tumor-infiltrating Tregs displayed intracellular lipid accumulation, which was attributable to an increased rate of fatty acid (FA) synthesis. Since the relative advantage in glucose uptake may fuel FA synthesis in intratumoral Tregs, we demonstrated that both glycolytic and oxidative metabolism contribute to Tregs’ expansion. We corroborated our data in human tumors showing that Tregs displayed a gene signature oriented toward glycolysis and lipid synthesis. Our data support a model in which signals from the tumor microenvironment induce a circuitry of glycolysis, FA synthesis, and oxidation that confers a preferential proliferative advantage to Tregs, whose targeting might represent a strategy for cancer treatment.
Journal Article