Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
79
result(s) for
"Neuroaxonal Dystrophies - pathology"
Sort by:
Differential levels of Neurofilament Light protein in cerebrospinal fluid in patients with a wide range of neurodegenerative disorders
2020
Cerebrospinal fluid (CSF) biomarkers are useful in the diagnosis and the prediction of progression of several neurodegenerative diseases. Among them, CSF neurofilament light (NfL) protein has particular interest, as its levels reflect neuroaxonal degeneration, a common feature in various neurodegenerative diseases. In the present study, we analyzed NfL levels in the CSF of 535 participants of the SPIN (Sant Pau Initiative on Neurodegeneration) cohort including cognitively normal participants, patients with Alzheimer disease (AD), Down syndrome (DS), frontotemporal dementia (FTD), amyotrophic lateral sclerosis (ALS), dementia with Lewy bodies (DLB), progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS). We evaluated the differences in CSF NfL accross groups and its association with other CSF biomarkers and with cognitive scales. All neurogenerative diseases showed increased levels of CSF NfL, with the highest levels in patients with ALS, FTD, CBS and PSP. Furthermore, we found an association of CSF NfL levels with cognitive impairment in patients within the AD and FTD spectrum and with AD pathology in DLB and DS patients. These results have implications for the use of NfL as a marker in neurodegenerative diseases.
Journal Article
Sequential formation of different layers of dystrophic neurites in Alzheimer’s brains
2019
Alzheimer’s disease (AD) is characterized by the presence of neuritic plaques in which dystrophic neurites (DNs) are typical constituents. We recently showed that DNs labeled by antibodies to the tubular endoplasmic reticulum (ER) protein reticulon-3 (RTN3) are enriched with clustered tubular ER. However, multi-vesicle bodies are also found in DNs, suggesting that different populations of DNs exist in brains of AD patients. To understand how different DNs evolve to surround core amyloid plaques, we monitored the growth of DNs in AD mouse brains (5xFAD and APP/PS1ΔE9 mice) by multiple approaches, including two-dimensional and three-dimensional (3D) electron microscopy (EM). We discovered that a pre-autophagosome protein ATG9A was enriched in DNs when a plaque was just beginning to develop. ATG9A-positive DNs were often closer to the core amyloid plaque, whereas RTN3 immunoreactive DNs were mostly located in the outer layers of ATG9A-positive DNs. Proteins such as RAB7 and LC3 appeared in DNs at later stages during plaque growth, likely accumulated as a part of large autophagy vesicles, and were distributed relatively furthest from the core amyloid plaque. Reconstructing the 3D structure of different morphologies of DNs revealed that DNs in AD mouse brains were constituted in three layers that are distinct by enriching different types of vesicles, as validated by immune-EM methods. Collectively, our results provide the first evidence that DNs evolve from dysfunctions of pre-autophagosomes, tubular ER, mature autophagosomes, and the ubiquitin proteasome system during plaque growth.
Journal Article
Physiological significance of WDR45, a responsible gene for β-propeller protein associated neurodegeneration (BPAN), in brain development
2021
WDR45 plays an essential role in the early stage of autophagy. De novo heterozygous mutations in
WDR45
have been known to cause β-propeller protein-associated neurodegeneration (BPAN), a subtype of neurodegeneration with brain iron accumulation (NBIA). Although BPAN patients display global developmental delay with intellectual disability, the neurodevelopmental pathophysiology of BPAN remains largely unknown. In the present study, we analyzed the physiological role of Wdr45 and pathophysiological significance of the gene abnormality during mouse brain development. Morphological and biochemical analyses revealed that Wdr45 is expressed in a developmental stage-dependent manner in mouse brain. Wdr45 was also found to be located in excitatory synapses by biochemical fractionation. Since
WDR45
mutations are thought to cause protein degradation, we conducted acute knockdown experiments by in utero electroporation in mice to recapitulate the pathophysiological conditions of BPAN. Knockdown of
Wdr45
caused abnormal dendritic development and synaptogenesis during corticogenesis, both of which were significantly rescued by co-expression with RNAi-resistant version of Wdr45. In addition, terminal arbors of callosal axons were less developed in Wdr45-deficient cortical neurons of adult mouse when compared to control cells. These results strongly suggest a pathophysiological significance of
WDR45
gene abnormalities in neurodevelopmental aspects of BPAN.
Journal Article
Formation and maintenance of Alzheimer's disease β-amyloid plaques in the absence of microglia
by
Winkelmann, Georg
,
Eldh, Therese
,
Staufenbiel, Matthias
in
Alzheimer Disease - genetics
,
Alzheimer Disease - metabolism
,
Alzheimer Disease - pathology
2009
Contrary to previous findings, this study finds that ablation of microglia, the resident macrophages of the brain, does not affect amyloid plaque or neuritic pathology in two mouse models of Alzheimer's disease.
In Alzheimer's disease, microglia cluster around β-amyloid deposits, suggesting that these cells are important for amyloid plaque formation, maintenance and/or clearance. We crossed two distinct
APP
transgenic mouse strains with
CD11b
-
HSVTK
mice, in which nearly complete ablation of microglia was achieved for up to 4 weeks after ganciclovir application. Neither amyloid plaque formation and maintenance nor amyloid-associated neuritic dystrophy depended on the presence of microglia.
Journal Article
Cerebral Iron Deposition in Neurodegeneration
by
Roos, Per M.
,
Dusek, Petr
,
Hofer, Tim
in
Aging
,
Alzheimer's disease
,
Amyotrophic lateral sclerosis
2022
Disruption of cerebral iron regulation appears to have a role in aging and in the pathogenesis of various neurodegenerative disorders. Possible unfavorable impacts of iron accumulation include reactive oxygen species generation, induction of ferroptosis, and acceleration of inflammatory changes. Whole-brain iron-sensitive magnetic resonance imaging (MRI) techniques allow the examination of macroscopic patterns of brain iron deposits in vivo, while modern analytical methods ex vivo enable the determination of metal-specific content inside individual cell-types, sometimes also within specific cellular compartments. The present review summarizes the whole brain, cellular, and subcellular patterns of iron accumulation in neurodegenerative diseases of genetic and sporadic origin. We also provide an update on mechanisms, biomarkers, and effects of brain iron accumulation in these disorders, focusing on recent publications. In Parkinson’s disease, Friedreich’s disease, and several disorders within the neurodegeneration with brain iron accumulation group, there is a focal siderosis, typically in regions with the most pronounced neuropathological changes. The second group of disorders including multiple sclerosis, Alzheimer’s disease, and amyotrophic lateral sclerosis shows iron accumulation in the globus pallidus, caudate, and putamen, and in specific cortical regions. Yet, other disorders such as aceruloplasminemia, neuroferritinopathy, or Wilson disease manifest with diffuse iron accumulation in the deep gray matter in a pattern comparable to or even more extensive than that observed during normal aging. On the microscopic level, brain iron deposits are present mostly in dystrophic microglia variably accompanied by iron-laden macrophages and in astrocytes, implicating a role of inflammatory changes and blood–brain barrier disturbance in iron accumulation. Options and potential benefits of iron reducing strategies in neurodegeneration are discussed. Future research investigating whether genetic predispositions play a role in brain Fe accumulation is necessary. If confirmed, the prevention of further brain Fe uptake in individuals at risk may be key for preventing neurodegenerative disorders.
Journal Article
Biotin Induces Inactive Chromosome X Reactivation and Corrects Physiopathological Alterations in Beta-Propeller-Protein-Associated Neurodegeneration
by
Romero-Domínguez, José Manuel
,
Álvarez-Córdoba, Mónica
,
Suárez-Carrillo, Alejandra
in
Analysis
,
Autophagy
,
Autophagy - drug effects
2025
Neurodegeneration with brain iron accumulation (NBIA) involves a group of rare neurogenetic disorders often linked with iron overload in the basal nuclei of the brain presenting with spasticity, dystonia, muscle rigidity, neuropsychiatric symptoms, and retinal degeneration. Among NBIA subtypes, beta-propeller-protein-associated neurodegeneration (BPAN) is associated with mutations in the autophagy gene WDR45 (WD repeat domain 45). Previously, we demonstrated that WDR45 mutations in BPAN cellular models impaired autophagy, iron metabolism, and cell bioenergetics. In addition, antioxidant supplementation partially improved cell physiopathology; however, autophagy and cell bioenergetics remained affected. In this work, we explored the possibility of expressing the normal WDR45 allele present in the inactive chromosome X (Xi) of BPAN cells through treatment with epigenetic modulators. The aim of this study was to demonstrate whether biotin, an epigenetic nutrient, was able to restore the expression levels of WDR45 by a mechanism involving Xi reactivation and, consequently, correct BPAN defects. Our study demonstrated that biotin supplementation increases histone biotinylation and allows for the transcription of the WDR45 allele in Xi. Consequently, all physiopathological alterations in BPAN cells were notably corrected. The reactivation of Xi by epigenetic modulators can be a promising approach for the treatment of BPAN and other X-linked diseases.
Journal Article
Association of Novel Pathogenic Variant (p. Ile366Asn) in PLA2G6 Gene with Infantile Neuroaxonal Dystrophy
2025
A couple presented to the office with an apparently healthy infant for a thorough clinical assessment, as they had previously lost two male children to a neurodegenerative disorder. They also reported the death of a male cousin abroad with a comparable condition. We aimed to evaluate a novel coding pathogenic variant c.1097T>A, PLA2G6, within the affected family, previously identified in a deceased cousin, but its clinical significance remained undetermined. A 200 bp PCR product of target genome (including codon 366 of PLA2G6) was amplified followed by enzymatic digestion (MboI) and sequencing. Structural pathogenic variant analysis was performed using PyMOL 2.5.4. In RFLP analysis, the mutant-type allele produced a single band of 200 bp, and the wild-type allele manifested as two bands of 112 bp and 88 bp. The pathogenic variant was identified in nine family members, including two heterozygous couples with consanguineous marriages resulting in affected children. It was predicted to be deleterious by multiple bioinformatic tools. The substitution of nonpolar isoleucine with polar asparagine of iPLA2 (Ile366Asn) resulted in a eense pathogenic variant (ATC>AAC). A missense variant (p. Ile366Asn) in the PLA2G6 gene is associated with clinically evident infantile neuroaxonal dystrophy, which is transmitted in an autosomal recessive pattern, and is also predicted to be dysfunctional by bioinformatic analyses.
Journal Article
Neuroferritinopathy Human-Induced Pluripotent Stem Cell-Derived Astrocytes Reveal an Active Role of Free Intracellular Iron in Astrocyte Reactivity
by
Moro, Andrea Stefano
,
Levi, Sonia
,
Balestrucci, Chiara
in
Astrocytes - metabolism
,
Astrocytes - pathology
,
Brain
2025
Increased iron levels, common in neurodegenerative diseases, correlate with disease severity, suggesting a role in the pathological process. Recently, efforts have been made to understand the role of iron in cerebral inflammatory processes. Employing astrocyte cell models of genetic neurodegenerative pathologies characterized by iron imbalance, such as the neurodegeneration with brain iron accumulation disorders, can provide valuable insights into astrocytes reactivity, a pivotal process in brain inflammation. Specifically, we employed human-induced pluripotent stem cell-derived astrocytes from Neuroferritinopathy, where iron accumulation is primary. After confirming iron accumulation and the deregulation of proteins involved in iron management, we observed that at 35 days since the beginning of differentiation, the elevated iron levels not only trigger ferroptosis but also place the astrocytes in a reactive state. This is evident in the higher extracellular concentrations of IL-6, IL-1β, and glutamate, along with changes in morphology, genes, and proteins involved in astrocyte reactivity. Interestingly, by day 60, IL-6 and IL-1β levels drop below those of the controls, and we observe a reversal in most of the factors considered. Moreover, at day 60, it is possible to observe not only increased senescence but also ferroptosis. These findings demonstrate that iron plays a primary role in inducing astrocyte reactivity.
Journal Article
Exploring therapeutic strategies for infantile neuronal axonal dystrophy (INAD/PARK14)
2023
Infantile neuroaxonal dystrophy (INAD) is caused by recessive variants in
PLA2G6
and is a lethal pediatric neurodegenerative disorder. Loss of the
Drosophila
homolog of
PLA2G6
, leads to ceramide accumulation, lysosome expansion, and mitochondrial defects. Here, we report that retromer function, ceramide metabolism, the endolysosomal pathway, and mitochondrial morphology are affected in INAD patient-derived neurons. We show that in INAD mouse models, the same features are affected in Purkinje cells, arguing that the neuropathological mechanisms are evolutionary conserved and that these features can be used as biomarkers. We tested 20 drugs that target these pathways and found that Ambroxol, Desipramine, Azoramide, and Genistein alleviate neurodegenerative phenotypes in INAD flies and INAD patient-derived neural progenitor cells. We also develop an AAV-based gene therapy approach that delays neurodegeneration and prolongs lifespan in an INAD mouse model.
Journal Article
Oral nimodipine treatment has no effect on amyloid pathology or neuritic dystrophy in the 5XFAD mouse model of amyloidosis
by
Sadleir, Katherine R.
,
Vassar, Robert
,
Popovic, Jelena
in
Accumulation
,
Administration, Oral
,
Alzheimer Disease - drug therapy
2022
Dysregulation of calcium homeostasis has been hypothesized to play a role in Alzheimer’s disease (AD) pathogenesis. Increased calcium levels can impair axonal transport, disrupt synaptic transmission, and ultimately lead to cell death. Given the potential role of calcium dyshomeostasis in AD, there is interest in testing the ability of already approved drugs targeting various calcium channels to affect amyloid pathology and other aspects of disease. The objective of this study was to test the effects of FDA-approved L-type calcium channel antagonist nimodipine on amyloid accumulation and dystrophic neurite formation in 5XFAD mice, a mouse model of amyloid pathology. 5XFAD transgenic mice and non-transgenic littermates were treated with vehicle or nimodipine-containing chow from two to eight months of age, then brains were harvested and amyloid pathology assessed by immunoblot and immunofluorescence microscopy analyses. Nimodipine was well tolerated and crossed the blood brain barrier, as expected, but there was no effect on Aβ accumulation or on the relative amount of neuritic dystrophy, as assessed by either immunoblot, dot blot or immunofluorescence imaging of Aβ42 and dystrophic neurite marker LAMP1. While we conclude that nimodipine treatment is not likely to improve amyloid pathology or decrease neuritic dystrophy in AD, it is worth noting that nimodipine did not worsen the phenotype suggesting its use is safe in AD patients.
Journal Article