MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Physiological significance of WDR45, a responsible gene for β-propeller protein associated neurodegeneration (BPAN), in brain development
Physiological significance of WDR45, a responsible gene for β-propeller protein associated neurodegeneration (BPAN), in brain development
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Physiological significance of WDR45, a responsible gene for β-propeller protein associated neurodegeneration (BPAN), in brain development
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Physiological significance of WDR45, a responsible gene for β-propeller protein associated neurodegeneration (BPAN), in brain development
Physiological significance of WDR45, a responsible gene for β-propeller protein associated neurodegeneration (BPAN), in brain development

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Physiological significance of WDR45, a responsible gene for β-propeller protein associated neurodegeneration (BPAN), in brain development
Physiological significance of WDR45, a responsible gene for β-propeller protein associated neurodegeneration (BPAN), in brain development
Journal Article

Physiological significance of WDR45, a responsible gene for β-propeller protein associated neurodegeneration (BPAN), in brain development

2021
Request Book From Autostore and Choose the Collection Method
Overview
WDR45 plays an essential role in the early stage of autophagy. De novo heterozygous mutations in WDR45 have been known to cause β-propeller protein-associated neurodegeneration (BPAN), a subtype of neurodegeneration with brain iron accumulation (NBIA). Although BPAN patients display global developmental delay with intellectual disability, the neurodevelopmental pathophysiology of BPAN remains largely unknown. In the present study, we analyzed the physiological role of Wdr45 and pathophysiological significance of the gene abnormality during mouse brain development. Morphological and biochemical analyses revealed that Wdr45 is expressed in a developmental stage-dependent manner in mouse brain. Wdr45 was also found to be located in excitatory synapses by biochemical fractionation. Since WDR45 mutations are thought to cause protein degradation, we conducted acute knockdown experiments by in utero electroporation in mice to recapitulate the pathophysiological conditions of BPAN. Knockdown of Wdr45 caused abnormal dendritic development and synaptogenesis during corticogenesis, both of which were significantly rescued by co-expression with RNAi-resistant version of Wdr45. In addition, terminal arbors of callosal axons were less developed in Wdr45-deficient cortical neurons of adult mouse when compared to control cells. These results strongly suggest a pathophysiological significance of WDR45 gene abnormalities in neurodevelopmental aspects of BPAN.