Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
926 result(s) for "Nuclear Pore Complex Proteins - metabolism"
Sort by:
The molecular architecture of the plant nuclear pore complex
The nucleus contains the cell's genetic material, which directs cellular activity via gene regulation. The physical barrier of the nuclear envelope needs to be permeable to a variety of macromolecules and signals. The most prominent gateways for the transport of macromolecules are the nuclear pore complexes (NPCs). The NPC is the largest multiprotein complex in the cell, and is composed of multiple copies of ∼30 different proteins called nucleoporins. Although much progress has been made in dissecting the NPC structure in vertebrates and yeast, the molecular architecture and physiological function of nucleoporins in plants remain poorly understood. In this review, we summarize the current knowledge regarding the plant NPC proteome and address structural and functional aspects of plant nucleoporins, which support the fundamental cellular machinery.
Chromatin-prebound Crm1 recruits Nup98-HoxA9 fusion to induce aberrant expression of Hox cluster genes
The nucleoporin Nup98 is frequently rearranged to form leukemogenic Nup98-fusion proteins with various partners. However, their function remains largely elusive. Here, we show that Nup98-HoxA9, a fusion between Nup98 and the homeobox transcription factor HoxA9, forms nuclear aggregates that frequently associate with facultative heterochromatin. We demonstrate that stable expression of Nup98-HoxA9 in mouse embryonic stem cells selectively induces the expression of Hox cluster genes. Genome-wide binding site analysis revealed that Nup98-HoxA9 is preferentially targeted and accumulated at Hox cluster regions where the export factor Crm1 is originally prebound. In addition, leptomycin B, an inhibitor of Crm1, disassembled nuclear Nup98-HoxA9 dots, resulting in the loss of chromatin binding of Nup98-HoxA9 and Nup98-HoxA9-mediated activation of Hox genes. Collectively, our results indicate that highly selective targeting of Nup98-fusion proteins to Hox cluster regions via prebound Crm1 induces the formation of higher order chromatin structures that causes aberrant Hox gene regulation. The nucleus of a eukaryotic cell (which includes plant and animal cells) contains most of the cell’s genetic material in the form of carefully packaged strands of DNA. Genes are stretches of DNA that contain the instructions needed to produce the proteins and RNA molecules that the cell needs to survive. These molecules move across the membrane that surrounds the nucleus through pores made of proteins. One of these pore-forming proteins is called Nup98. The gene that produces Nup98 is frequently mutated in leukemia, where part of it becomes fused to regions of other unrelated genes. The proteins made from these combined genes are known as “fusion proteins”. The Nup98-HoxA9 fusion protein has been well studied, and appears to cause leukemia by interfering with the process called (“cell differentiation”) by which stem cells specialize to form different types of blood cells. During cell differentiation, cells change which sets of genes they activate to become specific types of cells. A family of genes called Hox genes (to which the gene for HoxA9 belongs) is critical in cell differentiation and thus must be fine-tuned. It is also known that the Hox genes form clusters, and its activation is partly controlled by how tightly the DNA is packaged. Previous studies have shown that the Nup98-HoxA9 fusion protein takes on the form of small dots in the nucleus. Oka et al. have now tracked how these proteins are distributed inside of the nucleus, and examined which part of the DNA they bind to, in more detail. This revealed that the dots of Nup98-HoxA9 tend to associate with tightly packed DNA, especially on Hox cluster genes, and activate these genes. Oka et al. further found that a protein called Crm1, which is well known as a nuclear export factor that carries molecules out of the nucleus through the pore, is already bound to the Hox cluster genes in the nucleus and recruits the Nup98-HoxA9 protein. This interaction may change how the Hox gene is packaged in the nucleus. A future challenge will be to reveal how the Nup98-HoxA9 fusion protein and Crm1 on Hox cluster genes control gene expression.
SARS-CoV-2 Orf6 hijacks Nup98 to block STAT nuclear import and antagonize interferon signaling
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the ongoing coronavirus disease 2019 (COVID-19) pandemic that is a serious global health problem. Evasion of IFN-mediated antiviral signaling is a common defense strategy that pathogenic viruses use to replicate and propagate in their host. In this study, we show that SARS-CoV-2 is able to efficiently block STAT1 and STAT2 nuclear translocation in order to impair transcriptional induction of IFN-stimulated genes (ISGs). Our results demonstrate that the viral accessory protein Orf6 exerts this anti-IFN activity. We found that SARS-CoV-2 Orf6 localizes at the nuclear pore complex (NPC) and directly interacts with Nup98-Rae1 via its C-terminal domain to impair docking of cargo-receptor (karyopherin/importin) complex and disrupt nuclear import. In addition, we show that a methionine-to-arginine substitution at residue 58 impairs Orf6 binding to the Nup98-Rae1 complex and abolishes its IFN antagonistic function. All together our data unravel a mechanism of viral antagonism in which a virus hijacks the Nup98-Rae1 complex to overcome the antiviral action of IFN.
HIV-1 capsids enter the FG phase of nuclear pores like a transport receptor
HIV-1 infection requires nuclear entry of the viral genome. Previous evidence suggests that this entry proceeds through nuclear pore complexes (NPCs), with the 120 × 60 nm capsid squeezing through an approximately 60-nm-wide central channel 1 and crossing the permeability barrier of the NPC. This barrier can be described as an FG phase 2 that is assembled from cohesively interacting phenylalanine–glycine (FG) repeats 3 and is selectively permeable to cargo captured by nuclear transport receptors (NTRs). Here we show that HIV-1 capsid assemblies can target NPCs efficiently in an NTR-independent manner and bind directly to several types of FG repeats, including barrier-forming cohesive repeats. Like NTRs, the capsid readily partitions into an in vitro assembled cohesive FG phase that can serve as an NPC mimic and excludes much smaller inert probes such as mCherry. Indeed, entry of the capsid protein into such an FG phase is greatly enhanced by capsid assembly, which also allows the encapsulated clients to enter. Thus, our data indicate that the HIV-1 capsid behaves like an NTR, with its interior serving as a cargo container. Because capsid-coating with trans -acting NTRs would increase the diameter by 10 nm or more, we suggest that such a ‘self-translocating’ capsid undermines the size restrictions imposed by the NPC scaffold, thereby bypassing an otherwise effective barrier to viral infection. The HIV-1 capsid behaves like a nuclear transport receptor entering and traversing an FG phase, with its interior serving as a cargo container, bypassing an otherwise effective barrier to viral infection.
The HIV capsid mimics karyopherin engagement of FG-nucleoporins
HIV can infect non-dividing cells because the viral capsid can overcome the selective barrier of the nuclear pore complex and deliver the genome directly into the nucleus 1 , 2 . Remarkably, the intact HIV capsid is more than 1,000 times larger than the size limit prescribed by the diffusion barrier of the nuclear pore 3 . This barrier in the central channel of the nuclear pore is composed of intrinsically disordered nucleoporin domains enriched in phenylalanine–glycine (FG) dipeptides. Through multivalent FG interactions, cellular karyopherins and their bound cargoes solubilize in this phase to drive nucleocytoplasmic transport 4 . By performing an in vitro dissection of the nuclear pore complex, we show that a pocket on the surface of the HIV capsid similarly interacts with FG motifs from multiple nucleoporins and that this interaction licences capsids to penetrate FG-nucleoporin condensates. This karyopherin mimicry model addresses a key conceptual challenge for the role of the HIV capsid in nuclear entry and offers an explanation as to how an exogenous entity much larger than any known cellular cargo may be able to non-destructively breach the nuclear envelope. Dissection of the nuclear pore complex provides a model in which the HIV capsid enters the nucleus through karyopherin mimicry, a mechanism likely to be conserved across other viruses.
Architecture of the symmetric core of the nuclear pore
Nuclear pore complexes (NPCs) consist of around 1000 protein subunits, are embedded in the membrane that surrounds the nucleus, and regulate transport between the nucleus and the cytoplasm. Although the overall shape of NPCs is known, the details of this macromolecular complex have been obscure. Now, Lin et al. have reconstituted the pore components, determined the interactions between them, and fitted them into a tomographic reconstruction. Kosinski et al. have provided an architectural map of the inner ring of the pore. Science , this issue pp. 10.1126/science.aaf1015 and 363 Reconstitution, spectroscopy, and crystallography allow the construction of a model of the human nuclear pore. The nuclear pore complex (NPC) controls the transport of macromolecules between the nucleus and cytoplasm, but its molecular architecture has thus far remained poorly defined. We biochemically reconstituted NPC core protomers and elucidated the underlying protein-protein interaction network. Flexible linker sequences, rather than interactions between the structured core scaffold nucleoporins, mediate the assembly of the inner ring complex and its attachment to the NPC coat. X-ray crystallographic analysis of these scaffold nucleoporins revealed the molecular details of their interactions with the flexible linker sequences and enabled construction of full-length atomic structures. By docking these structures into the cryoelectron tomographic reconstruction of the intact human NPC and validating their placement with our nucleoporin interactome, we built a composite structure of the NPC symmetric core that contains ~320,000 residues and accounts for ~56 megadaltons of the NPC’s structured mass. Our approach provides a paradigm for the structure determination of similarly complex macromolecular assemblies.
In situ structural analysis of the human nuclear pore complex
The most comprehensive architectural model to date of the nuclear pore complex reveals previously unknown local interactions, and a role for nucleoporin 358 in Y-complex oligomerization. A detailed model of the human nuclear pore complex The transport of materials between the nucleus and cytoplasm in eukaryotic cells is controlled by the nuclear pore complex. Martin Beck and colleagues have used cryo-electron tomography, mass spectrometry and other analyses to generate the most comprehensive architectural model of the human nuclear pore complex to date. The model reveals previously unknown local interactions, and a role for the transport channel nucleoporin 358 (Nup358) in mediating oligomerization of the Y-complex within the nuclear pore complex. Nuclear pore complexes are fundamental components of all eukaryotic cells that mediate nucleocytoplasmic exchange. Determining their 110-megadalton structure imposes a formidable challenge and requires in situ structural biology approaches. Of approximately 30 nucleoporins (Nups), 15 are structured and form the Y and inner-ring complexes. These two major scaffolding modules assemble in multiple copies into an eight-fold rotationally symmetric structure that fuses the inner and outer nuclear membranes to form a central channel of ~60 nm in diameter 1 . The scaffold is decorated with transport-channel Nups that often contain phenylalanine-repeat sequences and mediate the interaction with cargo complexes. Although the architectural arrangement of parts of the Y complex has been elucidated, it is unclear how exactly it oligomerizes in situ . Here we combine cryo-electron tomography with mass spectrometry, biochemical analysis, perturbation experiments and structural modelling to generate, to our knowledge, the most comprehensive architectural model of the human nuclear pore complex to date. Our data suggest previously unknown protein interfaces across Y complexes and to inner-ring complex members. We show that the transport-channel Nup358 (also known as Ranbp2) has a previously unanticipated role in Y-complex oligomerization. Our findings blur the established boundaries between scaffold and transport-channel Nups. We conclude that, similar to coated vesicles, several copies of the same structural building block—although compositionally identical—engage in different local sets of interactions and conformations.
The nuclear pore complex: understanding its function through structural insight
Key Points Structural, biochemical and cell biology investigations of the nuclear pore complex (NPC) over the past 60 years have contributed to explaining its canonical features. Recently, in vitro and in situ investigations have converged to produce the first pseudo-atomic model of the NPC central core. It seems that nucleoporins, the building blocks of the NPC, are conformationally labile and locally adapt to serve multiple structural roles. A network of short linear motifs is essential for holding the scaffold of the NPC together and offers a novel and attractive scientific concept of how scaffolding might be regulated by post-translational modifications. Prospectively, these structural insights might trigger novel types of investigations that will shed light on the mechanism behind nucleocytoplasmic transport (as well as other functions of the NPC) and the disease-relevance of nucleoporin dysfunction. Nuclear pore complexes (NPCs) are large protein assemblies that form channels in the nuclear envelope and constitute major routes for nucleocytoplasmic communication. Insights into the complex structure of NPCs provide the basis for understanding their functions and reveal how the dysfunction of their structural components, nucleoporins, contributes to human disease. Nuclear pore complexes (NPCs) fuse the inner and outer nuclear membranes to form channels across the nuclear envelope. They are large macromolecular assemblies with a complex composition and diverse functions. Apart from facilitating nucleocytoplasmic transport, NPCs are involved in chromatin organization, the regulation of gene expression and DNA repair. Understanding the molecular mechanisms underlying these functions has been hampered by a lack of structural knowledge about the NPC. The recent convergence of crystallographic and biochemical in vitro analysis of nucleoporins (NUPs), the components of the NPC, with cryo-electron microscopic imaging of the entire NPC in situ has provided first pseudo-atomic view of its central core and revealed that an unexpected network of short linear motifs is an important spatial organization principle. These breakthroughs have transformed the way we understand NPC structure, and they provide an important base for functional investigations, including the elucidation of the molecular mechanisms underlying clinically manifested mutations of the nucleocytoplasmic transport system.
Molecular architecture of the inner ring scaffold of the human nuclear pore complex
Nuclear pore complexes (NPCs) are 110-megadalton assemblies that mediate nucleocytoplasmic transport. NPCs are built from multiple copies of ~30 different nucleoporins, and understanding how these nucleoporins assemble into the NPC scaffold imposes a formidable challenge. Recently, it has been shown how the Y complex, a prominent NPC module, forms the outer rings of the nuclear pore. However, the organization of the inner ring has remained unknown until now. We used molecular modeling combined with cross-linking mass spectrometry and cryo-electron tomography to obtain a composite structure of the inner ring. This architectural map explains the vast majority of the electron density of the scaffold. We conclude that despite obvious differences in morphology and composition, the higher-order structure of the inner and outer rings is unexpectedly similar.
Loss-of-function mutations in TNFAIP3 leading to A20 haploinsufficiency cause an early-onset autoinflammatory disease
Ivona Aksentijevich and colleagues identify heterozygous loss-of-function mutations in TNFAIP3 (encoding A20) in six unrelated families with early-onset systemic inflammation. Affected individuals exhibit increased expression of NF-κB–mediated proinflammatory cytokines, consistent with the established role of A20 as a potent inhibitor of the NF-κB signaling pathway. Systemic autoinflammatory diseases are driven by abnormal activation of innate immunity 1 . Herein we describe a new disease caused by high-penetrance heterozygous germline mutations in TNFAIP3 , which encodes the NF-κB regulatory protein A20, in six unrelated families with early-onset systemic inflammation. The disorder resembles Behçet's disease, which is typically considered a polygenic disorder with onset in early adulthood 2 . A20 is a potent inhibitor of the NF-κB signaling pathway 3 . Mutant, truncated A20 proteins are likely to act through haploinsufficiency because they do not exert a dominant-negative effect in overexpression experiments. Patient-derived cells show increased degradation of IκBα and nuclear translocation of the NF-κB p65 subunit together with increased expression of NF-κB–mediated proinflammatory cytokines. A20 restricts NF-κB signals via its deubiquitinase activity. In cells expressing mutant A20 protein, there is defective removal of Lys63-linked ubiquitin from TRAF6, NEMO and RIP1 after stimulation with tumor necrosis factor (TNF). NF-κB–dependent proinflammatory cytokines are potential therapeutic targets for the patients with this disease.