Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
4,248 result(s) for "Orange fruit"
Sort by:
Coating of orange fruit with nano-silver particles to minimizing harmful environmental pollution by chemical fungicide
This study was aimed to investigate the coating of nanoparticles to minimizing harmful of chemical fungicide in fruit industrial sector. The Effects of coating fruit surface with different concentrations of Nano-silver on the development of mycelium growth of, Penicillium digitatum and Aspergillus niger during storage were estimated. Coated treatments with silver recorded fully reduction of the fungal growth (100%,) on surface of fruit with concentration of 50 ppm and 100 ppm as compared with uncoated samples and fungicide. Also, the treatment with 100ppm of silver showed a significant decrease in weight loss compared with uncoated fruit. Application of nanotechnology can be an important way to replacing chemical fungicides in agricultural sector in future with regard controlling fungal post-harvest rot in stored fresh fruit.
Carnauba wax-based edible coatings retain quality enhancement of orange (Citrus sinensis cv. Moro) fruits during storage
Fruit coatings serve a dual purpose in preserving the quality of fruits. Not only do they act as a barrier against water evaporation and fungal infiltration, but they also enhance the fruit’s visual appeal in the market. Yet, their influence on the fruit’s quality components, which play a crucial role in determining its nutritional value, taste, and overall flavor, has remained relatively unexplored. This study aimed to evaluate the effects of carnauba wax coating on the quality of Moro oranges during storage. The selected fruits were meticulously chosen for uniformity in size. The experiment involved applying carnauba wax, a commonly used type among local producers, at four different concentrations: 0%, 0.5%, 1%, and 1.5%. These treatments were applied during various storage periods, including immediately after fruits were harvested and after 40 and 80 days. Following the application of these treatments, the oranges were stored in a controlled environment (morgue) at a temperature of 4 ± 1 °C. Subsequently, several physicochemical parameters of both the fruit flesh and skin were examined. The results unveiled a decline in the overall ascorbic acid content of the fruits. In terms of phenol content, a general decreasing trend was observed after harvesting. At each sampling interval during storage, the phenol content in uncoated fruits consistently exceeded that of their waxed counterparts. Significant reduction in fruit weight was observed throughout the storage period. Both vitamin C and total acidity levels in the fruit exhibited decreases during the storage period. As time passed, fruit firmness gradually declined, while fruit decay increased during the 40- and 80-day storage periods for untreated Moro oranges. The anthocyanin content showed an increasing trend. The study also unveiled a decline in the antioxidant capacity of citrus fruits during storage. Strong significant positive correlations were observed between total phenol content and key parameters, such as antioxidant activity (0.941 ** ), MDA (0.364 * ), vitamin C content, and total carbohydrate content (0.475 ** ). Skin radiance showed a perfect correlation with chroma and hue (1.000 ** ). Principal component analysis revealed that the first principal component accounted for 34.27% of the total variance, out of a total of five principal components that explained 77.14% of the variance. Through cluster analysis, the variables were categorized into three distinct groups; one associated with weight loss and another with ion leakage. Considering these findings, carnauba wax-based coating emerges as a promising solution for preserving Moro oranges. It effectively mitigates fruit weight loss and helps maintain fruit firmness during storage, making it a valuable tool for fruit preservation.
novel carotenoid cleavage activity involved in the biosynthesis of Citrus fruit-specific apocarotenoid pigments
Citrus is the first tree crop in terms of fruit production. The colour of Citrus fruit is one of the main quality attributes, caused by the accumulation of carotenoids and their derivative C30 apocarotenoids, mainly β-citraurin (3-hydroxy-β-apo-8′-carotenal), which provide an attractive orange-reddish tint to the peel of oranges and mandarins. Though carotenoid biosynthesis and its regulation have been extensively studied in Citrus fruits, little is known about the formation of C30 apocarotenoids. The aim of this study was to the identify carotenoid cleavage enzyme(s) [CCD(s)] involved in the peel-specific C30 apocarotenoids. In silico data mining revealed a new family of five CCD4-type genes in Citrus. One gene of this family, CCD4b1, was expressed in reproductive and vegetative tissues of different Citrus species in a pattern correlating with the accumulation of C30 apocarotenoids. Moreover, developmental processes and treatments which alter Citrus fruit peel pigmentation led to changes of β-citraurin content and CCD4b1 transcript levels. These results point to the involvement of CCD4b1 in β-citraurin formation and indicate that the accumulation of this compound is determined by the availability of the presumed precursors zeaxanthin and β-cryptoxanthin. Functional analysis of CCD4b1 by in vitro assays unequivocally demonstrated the asymmetric cleavage activity at the 7′,8′ double bond in zeaxanthin and β-cryptoxanthin, confirming its role in C30 apocarotenoid biosynthesis. Thus, a novel plant carotenoid cleavage activity targeting the 7′,8′ double bond of cyclic C40 carotenoids has been identified. These results suggest that the presented enzyme is responsible for the biosynthesis of C30 apocarotenoids in Citrus which are key pigments in fruit coloration.
Enhancing the Quality of Low-Alcohol Navel Orange Wine through Simultaneous Co-Fermentation Using Saccharomyces cerevisiae SC-125, Angel Yeast SY, and Lactiplantibacillus plantarum BC114
To date, there has been limited research on the interactive effects of yeast and lactic acid bacteria (LAB) on the sensory qualities of navel orange wine. In this study, using Jintang navel orange juice as the raw material, multi-microbial fermentation was conducted with Saccharomyces cerevisiae SC-125 and Angel yeast SY, as well as Lactiplantibacillus plantarum BC114. Single yeast and co-fermentation with Lactiplantibacillus plantarum were used as the control groups. The research aimed to investigate the physicochemical parameters of navel orange wine during fermentation. Additionally, headspace solid-phase microextraction gas chromatography–mass spectrometry (HP-SPME-GC-MS) was employed to determine and analyze the types and levels of flavor compounds in the navel orange wines produced through the different fermentation methods. The co-fermentation using the three strains significantly enhanced both the quantity and variety of volatile compounds in the navel orange wine, concomitant with heightened total phenol and flavonoid levels. Furthermore, a notable improvement was observed in the free radical scavenging activity. A sensory evaluation was carried out to analyze the differences among the various navel orange wines, shedding light on the impact of different wine yeasts and co-fermentation with LAB on the quality of navel orange wines.
Molecular and functional characterization of a novel chromoplast-specific lycopene β-cyclase from Citrus and its relation to lycopene accumulation
Carotenoids are the main pigments responsible of the colouration of Citrus fruits. The β-cyclization of lycopene, catalysed by the lycopene β-cyclases (β-LCY), seems to be a key regulatory step of the carotenoid pathway. In the present study, two β-LCYs from orange fruits (Citrus sinensis), named Csβ-LCY1 and Csβ-LCY2 have been isolated and the activity of the encoded proteins was demonstrated by functional analysis. Csβ-LCY1 was expressed at low levels and remained relatively constant during fruit ripening while Csβ-LCY2 showed a chromoplast-specific expression and a marked induction in both peel and pulp of orange fruits in parallel with the accumulation of β,β-xanthophylls. The potential involvement of Csβ-LCY2 in the accumulation of lycopene, characteristic of some Citrus species such as red grapefruits, was investigated. Expression of Csβ-LCY2 and another seven carotenoid biosynthetic genes were studied in the peel and pulp of the high lycopene-accumulating grapefruit, Star Ruby, and compared with those of ordinary Navel orange. In Star Ruby, the accumulation of lycopene during fruit maturation was associated with a substantial reduction in the expression of both β-LCY2 and β-CHX genes with respect to Navel orange. Moreover, two different alleles of β-LCY2: β-LCY2a and β-LCY2b were isolated from both genotypes, and functional assays demonstrated that the lycopene β-cyclase activity of the allele b was almost null. Interestingly, Star Ruby grapefruit predominantly expressed the unfunctional β-LCY2b allele during fruit ripening whereas Navel oranges preferably expressed the functional allele. It is suggested that the presence of diverse alleles of the β-LCY2 gene, encoding enzymes with altered activity, with different transcript accumulation may be an additional regulatory mechanism of carotenoid synthesis involved in the accumulation of lycopene in red grapefruits.
Osmolytes and CsAQP expression jointly influence water physiology in the peel and pulp of orange (Citrus sinensis (L.) Osbeck) fruit during postharvest water loss
Water loss is a serious issue affecting the quality of postharvest horticultural products. Aquaporins (AQPs) regulate the transport of water across biological membranes, along the gradient of water potential, and may play a role in water loss. In this study, matured orange fruits ( Citrus sinensis ) stored at ambinent temperature (RH 85-95%) for 105 d showed that the weight loss persistently increased, and its rate peaked at 45–60 d and 90–105 d. Both water content and potential were higher in the pulp than in the peel. Water content rose before 60 d, and peel water potential fell with an increased gradient after 60 d. Comparing with peel, osmolytes such as soluble sugar, sucrose, glucose, fructose, and organic acids showed higher accumulation, and their levels were the lowest around 60 d. In contrast, soluble protein and inorganic minerals showed low levels of accumulation in the pulp. In total, 31 CsAQP genes were expressed in the fruit, and most of them were down-regulated in the peel but up-regulated in the pulp during storage. These genes were subsequently classified into four clusters based on their expression patterns. Genes in Cluster I — including CsNIP1;1/2;1/2;2/2;3/3;1/4;1/6;1 , CsTIP1;3/2;2/2;3/5;1/6;1 , CsXIP1;1/1;2 , CsSIP1;2 , and CsPIP1;2 — were persistently up-regulated in the pulp for the 105 d of storage, especially at day 60, when some genes showed 103-fold higher expression. Pearson’s correlation and principal component analysis further revealed a significant positive correlation among weight loss rate, water content, and water potential gradient (R 2 = 0.85). Indexes positively correlated with osmolyte content and Cluster I gene expression in pulp samples suggest that increased CsAQP gene expression in pulp is linked to faster water loss in oranges, particularly at 60 days postharvest.
Orange Fruit Images Classification using Convolutional Neural Networks
The quality of fruit is important to increase sales in the market. Right now, the quality selection of orange fruit is mostly still complete by humans. Several drawbacks such as inaccuracy and inconsistency in results happened due to the limitation of human perceptions. The development of computer vision, making it possible to train the computer to classify images based on specified characteristics. This paper proposes the classification model to classify orange images using Convolutional Neural Network (CNN). Five classes of orange namely good-orange-grade-1, good-orange-grade-2, immature-orange, rotten-orange, and damaged-orange are classified using deep learning CNN. Total of 1000 orange images is collected using the smartphone camera. Each class consists of 200 images which are divided into 60% as the training data, 20% as the validation data, and 20% as the testing data. K-Fold Cross-Validation method is used to validate the model. In this paper, the hidden layer of CNN consists of 256 nodes. Two activation functions, ReLU and Tanh, are employed for comparing the accuracy of classification with the Softmax classifier. The result shows that the accuracy of ReLU activation function is 96%, which is better than the Tanh activation function that gives only 93,8%.
The Design and Evaluation of an Orange-Fruit Detection Model in a Dynamic Environment Using a Convolutional Neural Network
Agricultural robots play a crucial role in ensuring the sustainability of agriculture. Fruit detection is an essential part of orange-harvesting robot design. Ripe oranges need to be detected accurately in an orchard so they can be successfully picked. Accurate fruit detection in the orchard is significantly hindered by the challenges posed by the illumination and occlusion of fruit. Hence, it is important to detect fruit in a dynamic environment based on real-time data. This paper proposes a deep-learning convolutional neural network model for orange-fruit detection using a universal real-time dataset, specifically designed to detect oranges in a complex dynamic environment. Data were annotated and a dataset was prepared. A Keras sequential convolutional neural network model was prepared with a convolutional layer-activation function, maximum pooling, and fully connected layers. The model was trained using the dataset then validated by the test data. The model was then assessed using the image acquired from the orchard using Kinect RGB-D camera. The model was then run and its performance evaluated. The proposed CNN model shows an accuracy of 93.8%, precision of 98%, recall of 94.8%, and F1 score of 96.5%. The accuracy was mainly affected by the occlusion of oranges and leaves in the orchard’s trees. Varying illumination was another factor affecting the results. Overall, the orange-detection model presents good results and can effectively identify oranges in a complex real-time environment, like an orchard.
Effect of Brassinolide and Chitosan on Vegetative Growth and some Qualitative Parameters of Local and Blood Orange Fruits. Citrus sinensis L
The experiment was conducted on orange trees variety(Local orange and blood orange) Citrus sinensis L. for the season 2021, to study the effect of the variety and spraying with Brassinolide regulator at a concentration of 0.015, 0.025 mg L -1 and Chitosan 0.5%, 1% on some vegetative growth characteristics and qualitative characteristics of orange fruits. It was designed using a randomized complete block design, and the difference between the means was tested using the least significant difference test at the 5% probability level. The results showed the superiority of the variety factor, as the local variety (V 1 ) achieved a significant increase in the area of one leaf and the content of leaves from chlorophyll and carbohydrates, while the blood variety (V 2 ) was significantly superior in reducing the acidity of the fruit juice and increasing the content of the fruits of total sugars. Concerning spraying treatments, the spraying with Brassinolide BL2 at a concentration of 0.025 mg L −1 was superior in the area of one leaf, the content of leaves from chlorophyll and carbohydrates and the increase in the content of fruits from total sugars, and the treatment of spraying with Chitosan Ch2 at a concentration of 1% had a significant role in increasing the area of one leaf and Leaves of chlorophyll and carbohydrates.
Antifungal Action of Edible Coating Comprising Artichoke-Mediated Nanosilver and Chitosan Nanoparticles for Biocontrol of Citrus Blue Mold
Citrus fruits are major economic and nutritional crops that are sometimes subjected to serious attacks by many fungal phytopathogens after harvesting. In this study, we focus on the structures of potential antifungal nanocomposites from artichoke leaf extract (Art), Art-mediated nanosilver (AgNPs), and their nanoconjugates with chitosan nanoparticles (Cht) to eradicate the blue mold fungus (Penicillium italicum) and preserve oranges during storage via nanocomposite-based edible coatings (ECs). The biosynthesis and conjugation of nanomaterials were verified using UV and infrared (FTIR) spectroscopy, electron microscopy (TEM and SEM) analysis, and DLS assessments. Art could effectually biosynthesize/cap AgNPs with a mean size of 10.35 nm, whereas the average size of Cht was 148.67 nm, and the particles of their nanocomposites had average diameters of 203.22 nm. All nanomaterials/composites exhibited potent antifungal action toward P. italicum isolates; the Cht/Art/AgNP nanocomposite was the most effectual, with an inhibition zone of 31.1 mm and a fungicidal concentration of 17.5 mg/mL, significantly exceeding the activity of other compounds and the fungicide Enilconazole (24.8 mm and 25.0 mg/mL, respectively). The microscopic imaging of P. italicum mycelia treated with Cht/Art/AgNP nanocomposites emphasized their action for the complete destruction of mycelia within 24 h. The orange (Citrus sinensis) fruit coatings, with nanomaterial-based ECs, were highly effectual for preventing blue mold development and preserved fruits for >14 days without any infestation signs; when the control infected fruits were fully covered with blue mold, the infestation remarks covered 12.4%, 5.2%, and 0% of the orange coated with Cht Art/AgNPs and Cht/Art/AgNPs. The constructed Cht/Art/AgNP nanocomposites have potential as effectual biomaterials for protecting citrus fruits from fungal deterioration and preserving their quality.