MbrlCatalogueTitleDetail

Do you wish to reserve the book?
The Design and Evaluation of an Orange-Fruit Detection Model in a Dynamic Environment Using a Convolutional Neural Network
The Design and Evaluation of an Orange-Fruit Detection Model in a Dynamic Environment Using a Convolutional Neural Network
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
The Design and Evaluation of an Orange-Fruit Detection Model in a Dynamic Environment Using a Convolutional Neural Network
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
The Design and Evaluation of an Orange-Fruit Detection Model in a Dynamic Environment Using a Convolutional Neural Network
The Design and Evaluation of an Orange-Fruit Detection Model in a Dynamic Environment Using a Convolutional Neural Network

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
The Design and Evaluation of an Orange-Fruit Detection Model in a Dynamic Environment Using a Convolutional Neural Network
The Design and Evaluation of an Orange-Fruit Detection Model in a Dynamic Environment Using a Convolutional Neural Network
Journal Article

The Design and Evaluation of an Orange-Fruit Detection Model in a Dynamic Environment Using a Convolutional Neural Network

2023
Request Book From Autostore and Choose the Collection Method
Overview
Agricultural robots play a crucial role in ensuring the sustainability of agriculture. Fruit detection is an essential part of orange-harvesting robot design. Ripe oranges need to be detected accurately in an orchard so they can be successfully picked. Accurate fruit detection in the orchard is significantly hindered by the challenges posed by the illumination and occlusion of fruit. Hence, it is important to detect fruit in a dynamic environment based on real-time data. This paper proposes a deep-learning convolutional neural network model for orange-fruit detection using a universal real-time dataset, specifically designed to detect oranges in a complex dynamic environment. Data were annotated and a dataset was prepared. A Keras sequential convolutional neural network model was prepared with a convolutional layer-activation function, maximum pooling, and fully connected layers. The model was trained using the dataset then validated by the test data. The model was then assessed using the image acquired from the orchard using Kinect RGB-D camera. The model was then run and its performance evaluated. The proposed CNN model shows an accuracy of 93.8%, precision of 98%, recall of 94.8%, and F1 score of 96.5%. The accuracy was mainly affected by the occlusion of oranges and leaves in the orchard’s trees. Varying illumination was another factor affecting the results. Overall, the orange-detection model presents good results and can effectively identify oranges in a complex real-time environment, like an orchard.

MBRLCatalogueRelatedBooks