Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
49 result(s) for "Oxocins - analysis"
Sort by:
Guidance Level for Brevetoxins in French Shellfish
Brevetoxins (BTXs) are marine biotoxins responsible for neurotoxic shellfish poisoning (NSP) after ingestion of contaminated shellfish. NSP is characterized by neurological, gastrointestinal and/or cardiovascular symptoms. The main known producer of BTXs is the dinoflagellate Karenia brevis, but other microalgae are also suspected to synthesize BTX-like compounds. BTXs are currently not regulated in France and in Europe. In November 2018, they have been detected for the first time in France in mussels from a lagoon in the Corsica Island (Mediterranean Sea), as part of the network for monitoring the emergence of marine biotoxins in shellfish. To prevent health risks associated with the consumption of shellfish contaminated with BTXs in France, a working group was set up by the French Agency for Food, Environmental and Occupational Health & Safety (Anses). One of the aims of this working group was to propose a guidance level for the presence of BTXs in shellfish. Toxicological data were too limited to derive an acute oral reference dose (ARfD). Based on human case reports, we identified two lowest-observed-adverse-effect levels (LOAELs). A guidance level of 180 µg BTX-3 eq./kg shellfish meat is proposed, considering a protective default portion size of 400 g shellfish meat.
Brevetoxin Dynamics and Bioavailability from Floc Following PAC-Modified Clay Treatment of Karenia brevis Blooms
Harmful algal blooms (HABs) caused by the dinoflagellate Karenia brevis present serious ecological and public health concerns due to the production of brevetoxins (BTX). Clay flocculation and sedimentation of cells, particularly with polyaluminum chloride (PAC)-modified clays, is a promising HAB mitigation approach. This study evaluated the efficacy of Modified Clay-II (MCII), a PAC-modified kaolinite clay, in reducing K. brevis cell abundance in mesocosm experiments and examined the bioavailability of BTX potentially released from settled floc back into the water column and sediment over the first 72 h after treatment. Additionally, we quantified trace metals in benthic clams (Mercenaria mercenaria) exposed to the floc post-treatment to assess metal accumulation and potential toxicological effects from MCII application. MCII treatment (0.2 g/L) resulted in a 91% reduction in K. brevis cell density and a 50% decrease in waterborne brevetoxins after 5 h. Brevetoxins accumulated in sediment post-flocculation, with BTX-B5 emerging as the dominant congener. Clams exposed to MCII-treated floc showed comparable tissue BTX levels to controls and significantly elevated aluminum concentrations, though without mortality. The aluminum accumulations in this study do not raise concerns for the health of the clams or the humans who eat them, given other dietary exposures. These findings support the potential of MCII for HAB mitigation while underscoring the need for further evaluation of exposure risks to all benthic species.
Revisiting the Neuroblastoma Cell-Based Assay (CBA-N2a) for the Improved Detection of Marine Toxins Active on Voltage Gated Sodium Channels (VGSCs)
The neuroblastoma cell-based assay (CBA-N2a) is widely used for the detection of marine biotoxins in seafood products, yet a consensus protocol is still lacking. In this study, six key parameters of CBA-N2a were revisited: cell seeding densities, cell layer viability after 26 h growth, MTT incubation time, Ouabain and Veratridine treatment and solvent and matrix effects. A step-by-step protocol was defined identifying five viability controls for the validation of CBA-N2a results. Specific detection of two voltage gated sodium channel activators, pacific ciguatoxin (P-CTX3C) and brevetoxin (PbTx3) and two inhibitors, saxitoxin (STX) and decarbamoylsaxitoxin (dc-STX) was achieved, with EC50 values of 1.7 ± 0.35 pg/mL, 5.8 ± 0.9 ng/mL, 3 ± 0.5 ng/mL and 15.8 ± 3 ng/mL, respectively. When applied to the detection of ciguatoxin (CTX)-like toxicity in fish samples, limit of detection (LOD) and limit of quantification (LOQ) values were 0.031 ± 0.008 and 0.064 ± 0.016 ng P-CTX3C eq/g of flesh, respectively. Intra and inter-assays comparisons of viability controls, LOD, LOQ and toxicity in fish samples gave coefficients of variation (CVs) ranging from 3% to 29%. This improved test adaptable to either high throughput screening or composite toxicity estimation is a useful starting point for a standardization of the CBA-N2a in the field of marine toxin detection.
Design of a Duplex-to-Complex Structure-Switching Approach for the Homogeneous Determination of Marine Biotoxins in Water
In this report, we describe a fluorescent assay for the detection of six marine toxins in water. The mechanism of detection is based on a duplex-to-complex structure-switching approach. The six aptamers specific to the targeted cyanotoxins were conjugated to a fluorescent dye, carboxyfluorescein (FAM). In parallel, complementary DNA (cDNA) sequences specific to each aptamer were conjugated to a fluorescence quencher BHQ1. In the absence of the target, an aptamer–cDNA duplex structure is formed, and the fluorescence is quenched. By adding the toxin, the aptamer tends to bind to its target and releases the cDNA. The fluorescence intensity is consequently restored after the formation of the complex aptamer–toxin, where the fluorescence recovery is directly correlated with the analyte concentration. Based on this principle, a highly sensitive detection of the six marine toxins was achieved, with the limits of detection of 0.15, 0.06, 0.075, 0.027, 0.041, and 0.026 nM for microcystin-LR, anatoxin-α, saxitoxin, cylindrospermopsin, okadaic acid, and brevetoxin, respectively. Moreover, each aptameric assay showed a very good selectivity towards the other five marine toxins. Finally, the developed technique was applied for the detection of the six toxins in spiked water samples with excellent recoveries.
Brevetoxicosis: red tides and marine mammal mortalities
Potent marine neurotoxins known as brevetoxins are produced by the 'red tide' dinoflagellate Karenia brevis. They kill large numbers of fish and cause illness in humans who ingest toxic filter-feeding shellfish or inhale toxic aerosols. The toxins are also suspected of having been involved in events in which many manatees and dolphins died, but this has usually not been verified owing to limited confirmation of toxin exposure, unexplained intoxication mechanisms and complicating pathologies. Here we show that fish and seagrass can accumulate high concentrations of brevetoxins and that these have acted as toxin vectors during recent deaths of dolphins and manatees, respectively. Our results challenge claims that the deleterious effects of a brevetoxin on fish (ichthyotoxicity) preclude its accumulation in live fish, and they reveal a new vector mechanism for brevetoxin spread through food webs that poses a threat to upper trophic levels.
Use of Mass Spectrometry to Determine the Diversity of Toxins Produced by Gambierdiscus and Fukuyoa Species from Balearic Islands and Crete (Mediterranean Sea) and the Canary Islands (Northeast Atlantic)
Over the last decade, knowledge has significantly increased on the taxonomic identity and distribution of dinoflagellates of the genera Gambierdiscus and Fukuyoa. Additionally, a number of hitherto unknown bioactive metabolites have been described, while the role of these compounds in ciguatera poisoning (CP) remains to be clarified. Ciguatoxins and maitotoxins are very toxic compounds produced by these dinoflagellates and have been described since the 1980s. Ciguatoxins are generally described as the main contributors to this food intoxication. Recent reports of CP in temperate waters of the Canary Islands (Spain) and the Madeira archipelago (Portugal) triggered the need for isolation and cultivation of dinoflagellates from these areas, and their taxonomic and toxicological characterization. Maitotoxins, and specifically maitotoxin-4, has been described as one of the most toxic compounds produced by these dinoflagellates (e.g., G. excentricus) in the Canary Islands. Thus, characterization of toxin profiles of Gambierdiscus species from adjacent regions appears critical. The combination of liquid chromatography coupled to either low- or high-resolution mass spectrometry allowed for characterization of several strains of Gambierdiscus and Fukuyoa from the Mediterranean Sea and the Canary Islands. Maitotoxin-3, two analogues tentatively identified as gambieric acid C and D, a putative gambierone analogue and a putative gambieroxide were detected in all G. australes strains from Menorca and Mallorca (Balearic Islands, Spain) while only maitotoxin-3 was present in an F. paulensis strain of the same region. An unidentified Gambierdiscus species (Gambierdiscus sp.2) from Crete (Greece) showed a different toxin profile, detecting both maitotoxin-3 and gambierone, while the availability of a G. excentricus strain from the Canary Islands (Spain) confirmed the presence of maitotoxin-4 in this species. Overall, this study shows that toxin profiles not only appear to be species-specific but probably also specific to larger geographic regions.
Brevetoxin Aptamer Selection and Biolayer Interferometry Biosensor Application
Brevetoxins (PbTxs) are very potent marine neurotoxins that can cause an illness clinically described as neurologic shellfish poisoning (NSP). These toxins are cyclic polyether in chemistry and have increased their geographical distribution in the past 2 decades. However, the ethical problems as well as technical difficulties associated with currently employed analysis methods for marine toxins have spurred the quest for suitable alternatives to be applied in a regulatory monitoring regime. In this work, we reported the first instance of concurrent aptamer selection of Brevetoxin-1 (PbTx-1) and Brevetoxin-2 (PbTx-2) and constructed a biolayer interferometry (BLI) biosensor utilizing PbTx-1 aptamer as a specific recognition element. Through an in vitro selection process, we have, for the first time, successfully selected DNA aptamers with high affinity and specificity to PbTx-1 and PbTx-2 from a vast pool of random sequences. Among the selected aptamers, aptamer A5 exhibited the strongest binding affinity to PbTx-1, with an equilibrium dissociation constant (KD) of 2.56 μM. Subsequently, we optimized aptamer A5 by truncation to obtain the core sequence (A5-S3). Further refinement was achieved through mutations based on the predictions of a QGRS mapper, resulting in aptamer A5-S3G, which showed a significant increase in the KD value by approximately 100-fold. Utilizing aptamer A5-S3G, we fabricated a label-free, real-time optical BLI aptasensor for the detection of PbTx-1. This aptasensor displayed a broad detection range from 100 nM to 4000 nM PbTx-1, with a linear range between 100 nM and 2000 nM, and a limit of detection (LOD) as low as 4.5 nM. Importantly, the aptasensor showed no cross-reactivity to PbTx-2 or other marine toxins, indicating a high level of specificity for PbTx-1. Moreover, the aptasensor exhibited excellent reproducibility and stability when applied for the detection of PbTx-1 in spiked shellfish samples. We strongly believe that this innovative aptasensor offers a promising alternative to traditional immunological methods for the specific and reliable detection of PbTx-1.
Occurrence of Lipophilic Marine Toxins in Shellfish from Galicia (NW of Spain) and Synergies among Them
Lipophilic marine toxins pose a serious threat for consumers and an enormous economic problem for shellfish producers. Synergistic interaction among toxins may play an important role in the toxicity of shellfish and consequently in human intoxications. In order to study the toxic profile of molluscs, sampled during toxic episodes occurring in different locations in Galicia in 2014, shellfish were analyzed by liquid chromatography tandem mass spectrometry (LC–MS/MS), the official method for the detection of lipophilic toxins. The performance of this procedure was demonstrated to be fit for purpose and was validated in house following European guidelines. The vast majority of toxins present in shellfish belonged to the okadaic acid (OA) group and some samples from a particular area contained yessotoxin (YTX). Since these toxins occur very often with other lipophilic toxins, we evaluated the potential interactions among them. A human neuroblastoma cell line was used to study the possible synergies of OA with other lipophilic toxins. Results show that combination of OA with dinophysistoxin 2 (DTX2) or YTX enhances the toxicity triggered by OA, decreasing cell viability and cell proliferation, depending on the toxin concentration and incubation time. The effects of other lipophilic toxins as 13-desmethyl Spirolide C were also evaluated in vitro.
New Trends in the Occurrence of Yessotoxins in the Northwestern Adriatic Sea
Yessotoxins (YTXs) are polycyclic toxic ether compounds produced by phytoplanktonic dinoflagellates which accumulate in filter-feeding organisms. We know that the water temperature in our areas Northwestern Adriatic Sea is optimal for the growth of potentially toxic algae (around 20 °C). In recent years, these temperatures have remained at these levels for longer and longer periods, probably due to global warming, which has led to an excessive increase in toxin levels. The interruption of mussel harvesting caused by algae negatively affects farmers’ revenues and the availability of local fish, causing a major economic loss in Italy’s main shellfish sector. Methods: In the nine years considered, 3359 samples were examined: 1715 marine waters, 73 common clams; 732 mussels; 66 oysters; and 773 veracious clams. Bivalve molluscs were examined for the presence of marine biotoxins, including YTXs, while potentially toxic algae, including those producing YTXs, were searched for and counted in marine waters. The method adopted for the quantification of lipophilic toxins involves the use of an LC-MS/MS system. The enumeration of phytoplankton cells was performed according to the Utermhöl method. Results: Between 2012 and 2020, 706 molluscs were tested for YTXs. In total, 246 samples tested positive, i.e., 34.84%. Of the positive samples, 30 exceeded the legal limit. Conclusion: In this regard, it is essential to develop and activate, as soon as possible, an “early warning” system that allows a better control of the production areas of live bivalve molluscs, thus allowing an optimal management of the plants in these critical situations.
Preparation of Monoclonal Antibody for Brevetoxin 1 and Development of Ic-ELISA and Colloidal Gold Strip to Detect Brevetoxin 1
Brevetoxin-1 (BTX-1), a marine toxin mostly produced by the dinoflagellatae Karenia brevis, has caused the death of marine organisms and has had numerous toxicological effects on human health. Hence, it is very necessary to develop a rapid, economical, and reliable immunoassay method for BTX-1 detection. In this study, two kinds of complete antigen were synthesized using the succinic anhydride and isobutyl chloroformate two-step methods. Conjugate BTX-1-OVA was used as an antigen for mice immunization, and BTX-1-BSA for measuring the titer of the produced antibodies. A hybridoma cell line 6C6 stably secreting monoclonal antibody (mAb) against BTX-1 was obtained by fusing SP2/0 myeloma cells with the spleen cells from the immunized mouse. The hybridoma 6C6 was injected into the abdomen of BALB/c mice to obtain ascites, and the anti-BTX-1 mAb was harvested from ascites by precipitation with caprylic acid/ammonium sulfate (CA-AS). The anti-BTX-1 mAb was identified as an IgG1 subtype, and the cross-reactivity results showed that anti-BTX-1 mAb was highly specific to BTX-1 with the affinity of 1.06 × 108 L/mol. The indirect competitive ELISA results indicated that the linear range for BTX-1 detection was 14–263 ng/mL with IC50 of 60 ng/mL, and a detection limit of 14 ng/mL. The average recovery rate from the spiked samples was 88 ± 2% in intra-assay and 89 ± 2% in inter-assay. The limit of detection (LOD) using the colloidal gold strip was 200 ng/mL with high specificity. Therefore, the anti-BTX-1 mAb can be used to detect BTX-1 in shellfish and other related samples.