Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
122 result(s) for "Oxylipins - isolation "
Sort by:
Comparison of sample preparation methods for the quantitative analysis of eicosanoids and other oxylipins in plasma by means of LC-MS/MS
Oxylipins are potent lipid mediators. For the evaluation of their biological roles, several LC-MS based methods have been developed. While these methods are similar, the described sample preparation procedures for the extraction of oxylipins differ considerably. In order to deduce the most appropriate method for the analysis of non-esterified oxylipins in human plasma, we evaluated the performance of seven established sample preparation procedures. Six commonly used solid phase extraction (SPE) and one liquid-liquid extraction (LLE) protocol were compared based on the recovery of 13 added internal standards, extraction efficacy of oxylipins from plasma and reduction of ion-suppressing matrix. Dramatic differences in the performance in all three parameters were found. LLE with ethyl acetate was overall not a sufficient sample preparation strategy. The protocols using Oasis- and StrataX-material insufficiently removed interfering matrix compounds. Extraction efficacy of oxylipins on anion-exchanging BondElut cartridges was low, while removal of matrix was nearly perfect. None of the protocols led to a high extraction efficacy of analytes while removing all interfering matrix components. However, SPE on a C18-material with removal of matrix by water and n -hexane prior elution with methyl formate showed the best performance for the analysis of a broad spectrum of oxylipins in plasma. Graphical Abstract TOC art: Scheme of oxylipin extraction from plasma and ion suppression analysis of PGE 2
Wide-range screening of anti-inflammatory compounds in tomato using LC-MS and elucidating the mechanism of their functions
Obesity-induced chronic inflammation is a key factor in type 2 diabetes. A vicious cycle involving pro-inflammatory mediators between adipocytes and macrophages is a common cause of chronic inflammation in the adipose tissue. Tomato is one of the most popular vegetables and is associated with a reduced risk of diabetes. However, the molecular mechanism underlying the effect of tomato on diabetes is unclear. In this study, we focused on anti-inflammatory compounds in tomato. We found that the extract of tomato reduced plasma glucose and inflammatory markers in mice. We screened anti-inflammatory fractions in tomato using lipopolysaccharide-stimulated RAW264.7 macrophages, and active compounds were estimated by liquid chromatography-mass spectrometry over a wide range. Surprisingly, a large number of compounds including oxylipin and coumarin derivatives were estimated as anti-inflammatory compounds. Especially, 9-oxo-octadecadienoic acid and daphnetin suppressed pro-inflammatory cytokines in RAW264.7 macrophages inhibiting mitogen-activated protein kinase phosphorylation and inhibitor of kappa B α protein degradation. These findings suggest that tomato containing diverse anti-inflammatory compounds ameliorates chronic inflammation in obese adipose tissue.
Inhibition of Biofilm Formation by Modified Oxylipins from the Shipworm Symbiont Teredinibacter turnerae
The bioactivity-guided purification of the culture broth of the shipworm endosymbiont Teredinibacter turnerae strain 991H.S.0a.06 yielded a new fatty acid, turneroic acid (1), and two previously described oxylipins (2–3). Turneroic acid (1) is an 18-carbon fatty acid decorated by a hydroxy group and an epoxide ring. Compounds 1–3 inhibited bacterial biofilm formation in Staphylococcus epidermidis, while only 3 showed antimicrobial activity against planktonic S. epidermidis. Comparison of the bioactivity of 1–3 with structurally related compounds indicated the importance of the epoxide moiety for selective and potent biofilm inhibition.
Simple liquid chromatography-electrospray ionization ion trap mass spectrometry method for the quantification of galacto-oxylipin arabidopsides in plant samples
A simple and sensitive method to quantify five different arabidopsides by HPLC—ion trap mass spectrometry in complex plant samples was developed and validated. Arabidopsides are oxidized galactolipids first described in Arabidopsis thaliana but also produced by other plant species under stress conditions. External calibration was performed using arabidopsides purified from freeze-thawed Arabidopsis leaves. Lipids were extracted and pre-purified on an SPE silica column before HPLC–MS analysis. Arabidopsides were separated on a C18 column using a gradient of mQ water and acetonitrile:mQ water (85:15) supplemented with formic acid (0.2%) and ammonium formate (12 mM). The method was validated according to European commission decision 2002/657/CE. LOD, LOQ, linearity, intra-day and inter-day precision and accuracy, selectivity, matrix effects and recoveries were determined for the five metabolites. The established method is highly selective in a complex plant matrix. LOD and LOQ were, respectively, in the range 0.098–0.78 and 0.64–1.56 µM, allowing the arabidopside quantification from 25.6–62.4 nmol/g fresh weight. Calibration curve correlation coefficients were higher than 0.997. Matrix effects ranged from -2.09% to 6.10% and recoveries between 70.7% and 109%. The method was successfully applied to complex plant matrixes: Arabidopsis thaliana and Nasturtium officinale .
15S-Lipoxygenase metabolism in the marine diatom Pseudo-nitzschia delicatissima
In recent years, oxylipins (lipoxygenase-derived oxygenated fatty acid products) have been reported in several bloom-forming marine diatoms. Despite increasing attention on the ecophysiological role of these molecules in marine environments, their biosynthesis is largely unknown in these microalgae. Biochemical methods, including tandem mass spectrometry, nuclear magnetic resonance and radioactive probes were used to identify structures, enzymatic activities and growth-dependent modulation of oxylipin biosynthesis in the pennate diatom Pseudo-nitzschia delicatissima. Three major compounds, 15S-hydroxy-(5Z,8Z,11Z,13E,17Z)-eicosapentaenoic acid (15S-HEPE), 15-oxo-5Z,9E,11E,13E-pentadecatetraenoic acid and 13,14-threo-13R-hydroxy-14S,15S-trans-epoxyeicosa-5Z,8Z,11Z,17Z-tetraenoic acid (13,14-HEpETE), were produced by three putative biochemical pathways triggered by eicosapentaenoic acid-dependent 15S lipoxygenase. Oxylipin production increases along the growth curve, with remarkable changes that precede the demise of the culture. At least one of the compounds, namely 15-oxoacid, is formed only in the stationary phase immediately before the collapse of the culture. Synthesis and regulation of phyco-oxylipins seem to correspond to a signaling mechanism that governs adaptation of diatoms along the growth curve until bloom termination. Factors triggering the process are unknown but synthesis of 15-oxoacid, constrained within a time-window of a few days just before the collapse of the culture, implies the involvement of a physiological control not directly dependent on distress or death of diatom cells.
Oxylipin Diversity in the Diatom Family Leptocylindraceae Reveals DHA Derivatives in Marine Diatoms
Marine planktonic organisms, such as diatoms, are prospective sources of novel bioactive metabolites. Oxygenated derivatives of fatty acids, generally referred to as oxylipins, in diatoms comprise a highly diverse and complex family of secondary metabolites. These molecules have recently been implicated in several biological processes including intra- and inter-cellular signaling as well as in defense against biotic stressors and grazers. Here, we analyze the production and diversity of C20 and C22 non-volatile oxylipins in five species of the family Leptocylindraceae, which constitute a basal clade in the diatom phylogeny. We report the presence of species-specific lipoxygenase activity and oxylipin patterns, providing the first demonstration of enzymatic production of docosahexaenoic acid derivatives in marine diatoms. The differences observed in lipoxygenase pathways among the species investigated broadly reflected the relationships observed with phylogenetic markers, thus providing functional support to the taxonomic diversity of the individual species.
Influence of Short-Term Silicon Application on Endogenous Physiohormonal Levels of Oryza sativa L. Under Wounding Stress
The current study was conducted in order to investigate the short-term effects (6, 12, and 24 h) of silicon (Si) on the endogenous hormonal composition of rice (Oryza sativa L. cv. Dongjin-beyo), with and without wounding stress. Si applied in different concentrations (0.5, 1.0, and 2.0 mM) significantly promoted shoot length, plant biomass, and chlorophyll content of rice plants. Plants treated with different concentrations of sole Si for 6, 12, and 24 h had higher endogenous jasmonic acid contents than control. However, a combined application of wounding stress and Si induced a significantly small quantity of endogenous jasmonic acid as compared with control. On the contrary, endogenous salicylic acid level was significantly higher in sole Si-treated plants, while after wounding stress, a similar trend was observed yet again. After 6, 12, and 24 h of Si applications, with and without wounding stress, ethylene levels were significantly lower in comparison to their respective controls. The findings of the present study perpetrate the beneficial role of Si on the growth and development of rice plant by relieving physical injury and stress. Si also affects endogenous jasmonic acid and ethylene levels, while an inverse correlation exists between jasmonic acid and salicylic acid under wounding stress conditions.
Attraction of New Zealand Flower Thrips, Thrips obscuratus, to cis-Jasmone, a Volatile Identified from Japanese Honeysuckle Flowers
This work was undertaken to identify floral compound(s) produced by honeysuckle flowers, Lonicera japonica (Thunberg), that mediate the attraction of New Zealand flower thrips Thrips obscuratus (Crawford). Volatiles were collected during the day and night and analyzed by gas chromatography–mass spectrometry (GC-MS) to determine their emission over these two periods. Nine compounds were identified in the headspace; the main compound was linalool, and the other compounds were germacrene D, E , E - alpha -farnesene, nerolidol, cis -jasmone, cis -3-hexenyl acetate, hexyl acetate, cis -hexenyl tiglate, and indole. There was a quantitative difference between day and night volatiles, with cis -3-hexenyl acetate, hexyl acetate, cis -hexenyl tiglate, and cis -jasmone emitted in higher amounts during the day compared to the night. When the compounds were tested individually in field trapping experiments, only cis -jasmone attracted New Zealand flower thrips in a significant number. In another field trapping experiment, cis -jasmone caught similar numbers of New Zealand flower thrips compared to a floral blend formulated to mimic the ratios of the compounds emitted during the day, while catch with the night-emitted floral blend was not significantly different from the control. Subsequently, two field trapping experiments were conducted to determine the optimal attraction dose for cis -jasmone, a range of 1–100 mg loaded onto a red rubber stopper was tested, and the highest catches were in traps baited with 100 mg loading. A higher range of 100–1000 mg loaded into polyethylene vials was tested, and the highest catch was in traps baited with 500 mg. In another experiment aimed at comparing the attraction efficacy of cis -jasmone with the two other known thrips attractants (ethyl nicotinate and p -anisaldehyde), ethyl nicotinate showed the highest trap catch followed by cis -jasmone. A smaller number of Thrips tabaci (Lindeman) was attracted to traps baited with cis -jasmone. These results suggest that cis -jasmone might act as a kairomone that mediates the attraction of New Zealand flower thrips to the flowers of the Japanese honeysuckle.
Quantitative assays for esterified oxylipins generated by immune cells
Phospholipid-esterified oxylipins include newly described families of bioactive lipids generated by lipoxygenases in immune cells. Until now, assays for their quantitation were not well developed or widely available. Here, we describe a mass spectrometric protocol that enables accurate measurement of several esterified oxylipins—in particular hydro(pero)xyeicosatetraenoic acids, hydroxyoctadecadienoic acids, hydroxydocosahexaenoic acids and keto-eicosatetraenoic acids—attached to either phosphatidylethanolamine or phosphatidylcholine. Lipids are isolated from cells or tissue using a liquid-phase organic extraction, then analyzed by HPLC–tandem mass spectrometry (LC/MS/MS) in multiple reaction–monitoring mode. The protocol can simultaneously monitor up to 23 species. Generation of standards takes ∼2 d. Following this, extraction of 30 samples takes ∼3 h, with LC/MS/MS run time of 50 min per sample.