Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
187
result(s) for
"POU Domain Factors - genetics"
Sort by:
Induction of human neuronal cells by defined transcription factors
by
Ostermeier, Austin
,
Wernig, Marius
,
Südhof, Thomas C.
in
631/136/142
,
631/136/532/2064
,
631/378/2571/1696
2011
Neurons from fibroblasts
Three papers in this issue demonstrate the production of functional induced neuronal (iN) cells from human fibroblasts, a procedure that holds great promise for regenerative medicine. Pang
et al
. show that a combination of the three transcription factors
Ascl1
(also known as
Mash1
),
Brn2
(or
Pou3f2
) and
Myt1l
greatly enhances the neuronal differentiation of human embryonic stem cells. When combined with the basic helix–loop–helix transcription factor NeuroD1, these factors can also convert fetal and postnatal human fibroblasts into iN cells. Caiazzo
et al
. use a cocktail of three transcription factors to convert prenatal and adult mouse and human fibroblasts into functional dopaminergic neurons. The three are
Mash1
,
Nurr1
(or
Nr4a2
) and
Lmx1a
. Conversion is direct with no reversion to a progenitor cell stage, and it occurs in cells from Parkinson's disease patients as well as from healthy donors. Yoo
et al
. use an alternative approach. They show that microRNAs can have an instructive role in neural fate determination. Expression of miR-9/9* and miR-124 in human fibroblasts induces their conversion into functional neurons, and the process is facilitated by the addition of some neurogenic transcription factors.
Somatic cell nuclear transfer, cell fusion, or expression of lineage-specific factors have been shown to induce cell-fate changes in diverse somatic cell types
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
. We recently observed that forced expression of a combination of three transcription factors,
Brn2
(also known as
Pou3f2
),
Ascl1
and
Myt1l
, can efficiently convert mouse fibroblasts into functional induced neuronal (iN) cells
13
. Here we show that the same three factors can generate functional neurons from human pluripotent stem cells as early as 6 days after transgene activation. When combined with the basic helix–loop–helix transcription factor
NeuroD1
, these factors could also convert fetal and postnatal human fibroblasts into iN cells showing typical neuronal morphologies and expressing multiple neuronal markers, even after downregulation of the exogenous transcription factors. Importantly, the vast majority of human iN cells were able to generate action potentials and many matured to receive synaptic contacts when co-cultured with primary mouse cortical neurons. Our data demonstrate that non-neural human somatic cells, as well as pluripotent stem cells, can be converted directly into neurons by lineage-determining transcription factors. These methods may facilitate robust generation of patient-specific human neurons for
in vitro
disease modelling or future applications in regenerative medicine.
Journal Article
Direct conversion of fibroblasts to functional neurons by defined factors
by
Ostermeier, Austin
,
Kokubu, Yuko
,
Wernig, Marius
in
631/136/368
,
631/378/2571/2578
,
631/45/612/822
2010
Cellular differentiation and lineage commitment are considered to be robust and irreversible processes during development. Recent work has shown that mouse and human fibroblasts can be reprogrammed to a pluripotent state with a combination of four transcription factors. This raised the question of whether transcription factors could directly induce other defined somatic cell fates, and not only an undifferentiated state. We hypothesized that combinatorial expression of neural-lineage-specific transcription factors could directly convert fibroblasts into neurons. Starting from a pool of nineteen candidate genes, we identified a combination of only three factors,
Ascl1
,
Brn2
(also called
Pou3f2
) and
Myt1l
, that suffice to rapidly and efficiently convert mouse embryonic and postnatal fibroblasts into functional neurons
in vitro
. These induced neuronal (iN) cells express multiple neuron-specific proteins, generate action potentials and form functional synapses. Generation of iN cells from non-neural lineages could have important implications for studies of neural development, neurological disease modelling and regenerative medicine.
Nerve cells direct
The discovery that differentiated cells such as fibroblasts can be reprogrammed to pluripotency, producing iPS (induced pluripotent stem) cells, has generated much interest because of their potential therapeutic uses. Now Vierbuchen
et al
. show that mature differentiated cells can be directed, using a cocktail of transcription factors distinct from those used for generating iPS cells, to form functional neurons
in vitro
, without having to revert the fibroblasts to an embryonic state. Just three factors,
Ascl1
,
Brn2
(
Pou3f2
) and
Myt1l
, suffice to convert mouse embryonic and postnatal fibroblasts into functional neurons.
Mouse and human fibroblasts can be reprogrammed to a pluripotent state with a combination of four transcription factors. Here, mature differentiated cells are directed, via a combination of a few transcription factors (distinct from those described for generating iPS cells), to form functional neurons
in vitro
, without having to revert the fibroblasts to an embryonic state.
Journal Article
Direct conversion of human fibroblasts to dopaminergic neurons
by
Nelander, Jenny
,
Wood, James
,
Parmar, Malin
in
Action potentials
,
Action Potentials - physiology
,
Animals
2011
Recent reports demonstrate that somatic mouse cells can be directly converted to other mature cell types by using combined expression of defined factors. Here we show that the same strategy can be applied to human embryonic and postnatal fibroblasts. By overexpression of the transcription factors Ascl1, Brn2, and Myt1l, human fibroblasts were efficiently converted to functional neurons. We also demonstrate that the converted neurons can be directed toward distinct functional neurotransmitter phenotypes when the appropriate transcriptional cues are provided together with the three conversion factors. By combining expression of the three conversion factors with expression of two genes involved in dopamine neuron generation, Lmx1a and FoxA2, we could direct the phenotype of the converted cells toward dopaminergic neurons. Such subtype-specific induced neurons derived from human somatic cells could be valuable for disease modeling and cell replacement therapy.
Journal Article
Zbtb20 promotes astrocytogenesis during neocortical development
2016
Multipotent neural precursor cells (NPCs) generate astrocytes at late stages of mammalian neocortical development. Many signalling pathways that regulate astrocytogenesis directly induce the expression of GFAP, a marker of terminally differentiated astrocytes. However, astrocyte specification occurs before GFAP expression and essential factors for the specification step have remained elusive. Here we show that Zbtb20 regulates astrocyte specification in the mouse neocortex. Zbtb20 is highly expressed in late-stage NPCs and their astrocytic progeny. Overexpression and knockdown of Zbtb20 promote and suppress astrocytogenesis, respectively, although Zbtb20 does not directly activate the
Gfap
promoter. Astrocyte induction by Zbtb20 is suppressed by knockdown of Sox9 or NFIA. Furthermore, in the astrocyte lineage, Zbtb20 directly represses the expression of
Brn2
, which encodes a protein necessary for upper-layer neuron specification. Zbtb20 is thus a key determinant of astrocytogenesis, in which it collaborates with Sox9 and NFIA, and acts in part through direct repression of
Brn2
expression.
Astrocytes in the brain are derived from neural precursor cells (NPCs). Here, Motoshi Nagao and colleagues show that the transcription repressor Zbtb20 regulates astrocyte specification in the mouse neocortex.
Journal Article
Fluorescent fusion protein knockout mediated by anti-GFP nanobody
by
Affolter, Markus
,
Kanca, Oguz
,
Caussinus, Emmanuel
in
631/1647/1888/2249
,
631/337/474/2085
,
Amino Acid Sequence
2012
The combination of an F-box domain with a single-domain antibody that recognizes green fluorescent protein (GFP) now allows controlled depletion of GFP fusions in mammalian cells and in flies. This system, called deGradFP, should be widely useful, as GFP fusions are available for many proteins in model organisms.
The use of genetic mutations to study protein functions
in vivo
is a central paradigm of modern biology. Recent advances in reverse genetics such as RNA interference and morpholinos are widely used to further apply this paradigm. Nevertheless, such systems act upstream of the proteic level, and protein depletion depends on the turnover rate of the existing target proteins. Here we present deGradFP, a genetically encoded method for direct and fast depletion of target green fluorescent protein (GFP) fusions in any eukaryotic genetic system. This method is universal because it relies on an evolutionarily highly conserved eukaryotic function, the ubiquitin pathway. It is traceable, because the GFP tag can be used to monitor the protein knockout. In many cases, it is a ready-to-use solution, as GFP protein-trap stock collections are being generated in
Drosophila melanogaster
and in
Danio rerio
.
Journal Article
Diversity among POU transcription factors in chromatin recognition and cell fate reprogramming
2018
The POU (Pit-Oct-Unc) protein family is an evolutionary ancient group of transcription factors (TFs) that bind specific DNA sequences to direct gene expression programs. The fundamental importance of POU TFs to orchestrate embryonic development and to direct cellular fate decisions is well established, but the molecular basis for this activity is insufficiently understood. POU TFs possess a bipartite ‘two-in-one’ DNA binding domain consisting of two independently folding structural units connected by a poorly conserved and flexible linker. Therefore, they represent a paradigmatic example to study the molecular basis for the functional versatility of TFs. Their modular architecture endows POU TFs with the capacity to accommodate alternative composite DNA sequences by adopting different quaternary structures. Moreover, associations with partner proteins crucially influence the selection of their DNA binding sites. The plentitude of DNA binding modes confers the ability to POU TFs to regulate distinct genes in the context of different cellular environments. Likewise, different binding modes of POU proteins to DNA could trigger alternative regulatory responses in the context of different genomic locations of the same cell. Prominent POU TFs such as Oct4, Brn2, Oct6 and Brn4 are not only essential regulators of development but have also been successfully employed to reprogram somatic cells to pluripotency and neural lineages. Here we review biochemical, structural, genomic and cellular reprogramming studies to examine how the ability of POU TFs to select regulatory DNA, alone or with partner factors, is tied to their capacity to epigenetically remodel chromatin and drive specific regulatory programs that give cells their identities.
Journal Article
Neuronal identities derived by misexpression of the POU IV sensory determinant in a protovertebrate
by
Chacha, Prakriti Paul
,
Horie, Ryoko
,
Singh, Mona
in
Animals
,
Biological Evolution
,
Biological Sciences
2022
The protovertebrate Ciona intestinalis type A (sometimes called Ciona robusta) contains a series of sensory cell types distributed across the head–tail axis of swimming tadpoles. They arise from lateral regions of the neural plate that exhibit properties of vertebrate placodes and neural crest. The sensory determinant POU IV/Brn3 is known to work in concert with regional determinants, such as Foxg and Neurogenin, to produce palp sensory cells (PSCs) and bipolar tail neurons (BTNs), in head and tail regions, respectively. A combination of single-cell RNA-sequencing (scRNA-seq) assays, computational analysis, and experimental manipulations suggests that misexpression of POU IV results in variable transformations of epidermal cells into hybrid sensory cell types, including those exhibiting properties of both PSCs and BTNs. Hybrid properties are due to coexpression of Foxg and Neurogenin that is triggered by an unexpected POU IV feedback loop. Hybrid cells were also found to express a synthetic gene battery that is not coexpressed in any known cell type. We discuss these results with respect to the opportunities and challenges of reprogramming cell types through the targeted misexpression of cellular determinants.
Journal Article
The emergence of Sox and POU transcription factors predates the origins of animal stem cells
2024
Stem cells are a hallmark of animal multicellularity. Sox and POU transcription factors are associated with stemness and were believed to be animal innovations, reported absent in their unicellular relatives. Here we describe unicellular Sox and POU factors. Choanoflagellate and filasterean Sox proteins have DNA-binding specificity similar to mammalian Sox2. Choanoflagellate—but not filasterean—Sox can replace Sox2 to reprogram mouse somatic cells into induced pluripotent stem cells (iPSCs) through interacting with the mouse POU member Oct4. In contrast, choanoflagellate POU has a distinct DNA-binding profile and cannot generate iPSCs. Ancestrally reconstructed Sox proteins indicate that iPSC formation capacity is pervasive among resurrected sequences, thus loss of Sox2-like properties fostered Sox family subfunctionalization. Our findings imply that the evolution of animal stem cells might have involved the exaptation of a pre-existing set of transcription factors, where pre-animal Sox was biochemically similar to extant Sox, whilst POU factors required evolutionary innovations.
The pluripotency program is maintained by transcription factors from the Sox and POU families. Here they identify SOX and POU factors from unicellular relatives of animals and show that unicellular SOX can replace SOX2 to induce pluripotency, whilst unicellular POU differs from OCT4.
Journal Article
Mutually repressive interaction between Brn1/2 and Rorb contributes to the establishment of neocortical layer 2/3 and layer 4
by
Oishi, Koji
,
Aramaki, Michihiko
,
Nakajima, Kazunori
in
Animals
,
Binding sites
,
Biological Sciences
2016
Although several molecules have been shown to play important roles in subtype specification of neocortical neurons, the entire mechanism involved in the specification, in particular, of upper cortical plate (UCP) neurons still remains unclear. The UCP, which is responsible for intracortical connections in the neocortex, comprises histologically, functionally, and molecularly different layer 2/3 (L2/3) and L4. Here, we report the essential interactions between two types of transcription factors, Rorb (RAR-related orphan receptor beta) and Brn1/2 (Brain-1/Brain-2), for UCP specification. We found that Brn2 expression was detected in all upper layers in the immature UCP, but was subsequently restricted to L2/3, accompanied by up-regulation of Rorb in L4, suggesting demarcation of L2/3 and L4 during cortical maturation. Rorb indeed inhibited Brn2 expression and the expression of other L2/3 characteristics, revealed by ectopic expression and knockdown studies. Moreover, this inhibition occurred through direct binding of Rorb to the Brn2 locus. Conversely, Brn1/2 also inhibited Rorb expression and the expression of several L4 characteristics. Together, these results suggest that a mutually repressive mechanism exists between Brn1/2 and Rorb expression and that the established expression of Brn1/2 and Rorb further specifies those neurons into L2/3 and L4, respectively, during UCP maturation.
Journal Article
SOX2 Co-Occupies Distal Enhancer Elements with Distinct POU Factors in ESCs and NPCs to Specify Cell State
2013
SOX2 is a master regulator of both pluripotent embryonic stem cells (ESCs) and multipotent neural progenitor cells (NPCs); however, we currently lack a detailed understanding of how SOX2 controls these distinct stem cell populations. Here we show by genome-wide analysis that, while SOX2 bound to a distinct set of gene promoters in ESCs and NPCs, the majority of regions coincided with unique distal enhancer elements, important cis-acting regulators of tissue-specific gene expression programs. Notably, SOX2 bound the same consensus DNA motif in both cell types, suggesting that additional factors contribute to target specificity. We found that, similar to its association with OCT4 (Pou5f1) in ESCs, the related POU family member BRN2 (Pou3f2) co-occupied a large set of putative distal enhancers with SOX2 in NPCs. Forced expression of BRN2 in ESCs led to functional recruitment of SOX2 to a subset of NPC-specific targets and to precocious differentiation toward a neural-like state. Further analysis of the bound sequences revealed differences in the distances of SOX and POU peaks in the two cell types and identified motifs for additional transcription factors. Together, these data suggest that SOX2 controls a larger network of genes than previously anticipated through binding of distal enhancers and that transitions in POU partner factors may control tissue-specific transcriptional programs. Our findings have important implications for understanding lineage specification and somatic cell reprogramming, where SOX2, OCT4, and BRN2 have been shown to be key factors.
Journal Article