Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
140
result(s) for
"PS-InSAR"
Sort by:
Semi-automated regional classification of the style of activity of slow rock-slope deformations using PS InSAR and SqueeSAR velocity data
by
Crosta, Giovanni B
,
Crippa Chiara
,
Valbuzzi Elena
in
Alpine environments
,
Automation
,
Catastrophic failure analysis
2021
Large slow rock-slope deformations, including deep-seated gravitational slope deformations and large landslides, are widespread in alpine environments. They develop over thousands of years by progressive failure, resulting in slow movements that impact infrastructures and can eventually evolve into catastrophic rockslides. A robust characterization of their style of activity is thus required in a risk management perspective. We combine an original inventory of slow rock-slope deformations with different PS-InSAR and SqueeSAR datasets to develop a novel, semi-automated approach to characterize and classify 208 slow rock-slope deformations in Lombardia (Italian Central Alps) based on their displacement rate, kinematics, heterogeneity and morphometric expression. Through a peak analysis of displacement rate distributions, we characterize the segmentation of mapped landslides and highlight the occurrence of nested sectors with differential activity and displacement rates. Combining 2D decomposition of InSAR velocity vectors and machine learning classification, we develop an automatic approach to characterize the kinematics of each landslide. Then, we sequentially combine principal component and K-medoids cluster analyses to identify groups of slow rock-slope deformations with consistent styles of activity. Our methodology is readily applicable to different landslide datasets and provides an objective and cost-effective support to land planning and the prioritization of local-scale studies aimed at granting safety and infrastructure integrity.
Journal Article
Can Machine Learning and PS-InSAR Reliably Stand in for Road Profilometric Surveys?
2021
This paper proposes a methodology for correlating products derived by Synthetic Aperture Radar (SAR) measurements and laser profilometric road roughness surveys. The procedure stems from two previous studies, in which several Machine Learning Algorithms (MLAs) have been calibrated for predicting the average vertical displacement (in terms of mm/year) of road pavements as a result of exogenous phenomena occurrence, such as subsidence. Such algorithms are based on surveys performed with Persistent Scatterer Interferometric SAR (PS-InSAR) over an area of 964 km2 in the Tuscany Region, Central Italy. Starting from this basis, in this paper, we propose to integrate the information provided by these MLAs with 10 km of in situ profilometric measurements of the pavement surface roughness and relative calculation of the International Roughness Index (IRI). Accordingly, the aim is to appreciate whether and to what extent there is an association between displacements estimated by MLAs and IRI values. If a dependence exists, we may argue that road regularity is driven by exogenous phenomena and MLAs allow for the replacement of in situ surveys, saving considerable time and money. In this research framework, results reveal that there are several road sections that manifest a clear association among these two methods, while others denote that the relationship is weaker, and in situ activities cannot be bypassed to evaluate the real pavement conditions. We could wrap up that, in these stretches, the road regularity is driven by endogenous factors which MLAs did not integrate during their training. Once additional MLAs conditioned by endogenous factors have been developed (such as traffic flow, the structure of the pavement layers, and material characteristics), practitioners should be able to estimate the quality of pavement over extensive and complex road networks quickly, automatically, and with relatively low costs.
Journal Article
The new landslide inventory of Tuscany (Italy) updated with PS-InSAR: geomorphological features and landslide distribution
2018
In this paper, the updating of the landslide inventory of Tuscany region is presented. To achieve this goal, satellite SAR data processed with persistent scatter interferometry (PSI) technique have been used. The updating leads to a consistent reduction of unclassified landslides and to an increasing of active landslides. After the updating, we explored the characteristics of the new inventory, analysing landslide distribution and geomorphological features. Several maps have been elaborated, as sliding index or landslide density map; we also propose a density-area map to highlight areas with different landslide densities and sizes. A frequency-area analysis has been performed, highlighting a classical negative power-law distribution. We also explored landslide frequency for lithology, soil use and several morphological attributes (elevation, slope gradient, slope curvature), considering both all landslides and classified landslide types (flows, falls and slides).
Journal Article
Landslide Susceptibility Mapping Using Machine Learning Algorithm Validated by Persistent Scatterer In-SAR Technique
2022
Landslides are the most catastrophic geological hazard in hilly areas. The present work intends to identify landslide susceptibility along Karakorum Highway (KKH) in Northern Pakistan, using landslide susceptibility mapping (LSM). To compare and predict the connection between causative factors and landslides, the random forest (RF), extreme gradient boosting (XGBoost), k nearest neighbor (KNN) and naive Bayes (NB) models were used in this research. Interferometric synthetic aperture radar persistent scatterer interferometry (PS-InSAR) technology was used to explore the displacement movement of retrieved models. Initially, 332 landslide areas alongside the Karakorum Highway were found to generate the landslide inventory map using various data. The landslides were categorized into two sections for validation and training, of 30% and 70%. For susceptibility mapping, thirteen landslide-condition factors were created. The area under curve (AUC) of the receiver operating characteristic (ROC) curve technique was utilized for accuracy comparison, yielding 83.08, 82.15, 80.31, and 72.92% accuracy for RF, XGBoost, KNN, and NB, respectively. The PS-InSAR technique demonstrated a high deformation velocity along the line of sight (LOS) in model-sensitive areas. The PS-InSAR technique was used to evaluate the slope deformation velocity, which can be used to improve the LSM for the research region. The RF technique yielded superior findings, integrating with the PS-InSAR outcomes to provide the region with a new landslide susceptibility map. The enhanced model will help mitigate landslide catastrophes, and the outcomes may help ensure the roadway’s safe functioning in the study region.
Journal Article
Land Subsidence Monitoring Method in Regions of Variable Radar Reflection Characteristics by Integrating PS-InSAR and SBAS-InSAR Techniques
2022
In the InSAR solution, the uneven distribution of permanent scatterer candidates (PSCs) or slowly decoherent filtering phase (SDFP) pixel density in a region of variable radar reflection feature can cause local low accuracy in single interferometry. PSCs with higher-order coherence in Permanent Scatter InSAR (PS-InSAR) are generally distributed in those point targets of urban built-up areas, and SDFP pixels in Small Baseline Subset InSAR (SBAS-InSAR) are generally distributed in those distributed targets of countryside vegetation areas. According to the respective reliability of PS-InSAR and SBAS-InSAR for different radar reflection features, a new land subsidence monitoring method is proposed, which combines PS-SBAS InSAR by data fusion of different interferometry in different radar reflection regions. Density-based spatial clustering of applications with noise (DBSCAN) clustering analysis is carried out on the density of PSCs with higher-order coherence in PS-InSAR processing to zone the region of variable radar reflection features for acquiring the boundary of data fusion. The vector monitoring data of PS-InSAR is retained in the dense region of PSCs with higher-order coherence, and the vector monitoring data of SBAS-InSAR is used in the sparse region of PSCs with higher-order coherence. The vertical displacements from PS-InSAR and SBAS-InSAR are integrated to obtain the optimal land subsidence. The verification case of 38 SAR images acquired by the Sentinel-1A in Suzhou city indicates that the proposed method can automatically choose a matched interferometry technique according to the variability of radar reflection features in the region and improve the accuracy of using a single interferometry method. The integrated method of the combined field is more representative of overall subsidence characteristics than the PS-InSAR-only or SBAS-InSAR-only results, and it is better suited for the assessment of the impact of land subsidence over the study area. The research results of this paper can provide a useful comprehensive reference for city planning and help decrease land subsidence in Suzhou.
Journal Article
Surface Deformation of Xiamen, China Measured by Time-Series InSAR
2024
Due to its unique geographical location and rapid urbanization, Xiamen is particularly susceptible to geological disasters. This study employs 80 Sentinel-1A SAR images covering Xiamen spanning from May 2017 to December 2023 for comprehensive dynamic monitoring of the land subsidence. PS-InSAR and SBAS-InSAR techniques were utilized to derive the surface deformation field and time series separately, followed by a comparative analysis of their results. SBAS-InSAR was finally chosen in this study for its higher coherence. Based on its results, we conducted cause analysis and obtained the following findings. (1) The most substantial subsidence occurred in Maluan Bay and Dadeng Island, where the maximum subsidence rate was 24 mm/yr and the maximum cumulative subsidence reached 250 mm over the course of the study. Additionally, regions exhibiting subsidence rates ranging from 10 to 30 mm/yr included Yuanhai Terminal, Maluan Bay, Xitang, Guanxun, Jiuxi entrance, Yangtang, the southeastern part of Dadeng Island, and Yundang Lake. (2) Geological structure, groundwater extraction, reclamation and engineering construction all have impacts on land subsidence. The land subsidence of fault belts and seismic focus areas was significant, and the area above the clay layer settled significantly. Both direct and indirect analysis can prove that as the amount of groundwater extraction increases, the amount of land subsidence increases. Significant subsidence is prone to occur after the initial land reclamation, during the consolidation period of the old fill materials, and after land compaction. The construction changes the soil structure, and the appearance of new buildings increases the risk of subsidence.
Journal Article
A Novel Monitoring Method of Wind-Induced Vibration and Stability of Long-Span Bridges Based on Permanent Scatterer Interferometric Synthetic Aperture Radar Technology
2025
Long-span structures are highly vulnerable to wind-induced vibrations, which can pose a significant threat to their structural stability and safety. This paper introduces a novel monitoring method that combines Permanent Scatterer Interferometric Synthetic Aperture Radar (PS-InSAR) technology with Auto-Regressive Moving Average (ARMA) models, providing an innovative approach to monitoring wind-induced vibrations in large-span bridges. While previous studies have focused on individual techniques, this integrated approach is largely unexplored and offers a new perspective for structural health monitoring. By collating a series of SAR images and examining phase alterations on the bridge surface, a three-tiered detection methodology is employed to identify stable points accurately. The surface deformation data are then analyzed alongside wind speed and weather data to construct a comprehensive model elucidating the relationship between the bridge and vibrations. The ARMA model is used for real-time monitoring and assessment. Experimental results demonstrate that this method offers precise, real-time monitoring of wind-resistant stability. By leveraging the spatial accuracy and long-term monitoring capability of PS-InSAR, along with the time-series forecasting strength of ARMA models, the method enables data-driven analysis of bridge vibrations. It also provides comprehensive coverage under various conditions, enhancing the safety of long-span bridges through advanced predictive analytics.
Journal Article
Multi-Scale Analysis of the Relationship between Land Subsidence and Buildings: A Case Study in an Eastern Beijing Urban Area Using the PS-InSAR Technique
by
Ke, Yinghai
,
Chen, Beibei
,
Zhu, Lin
in
Beijing urban area
,
building construction
,
land subsidence
2018
Beijing is severely affected by land subsidence, and rapid urbanisation and building construction might accelerate the land subsidence process. Based on 39 Envisat Advanced Synthetic Aperture Radar (ASAR) images acquired between 2003–2010, 55 TerraSAR-X images acquired between 2010–2016, and urban building information, we analysed the relationship between land subsidence and buildings at the regional, block, and building scales. The results show that the surface displacement rate in the Beijing urban area ranged from −109 mm/year to +13 mm/year between 2003–2010, and from −151 mm/year to +19 mm/year between 2010–2016; two subsidence bowls were mainly distributed in the eastern part of the Chaoyang District. The displacement rate agreed well with the levelling measurements, with an average bias of less than six mm/year. At the regional scale, the spatial pattern of land subsidence was mainly controlled by groundwater extraction, compressible layer thickness, and geological faults. Subsidence centres were located in the area around ground water funnels with a compressible layer depth of 50–70 m. The block-scale analysis demonstrated a clear correlation between the block construction age and the spatial unevenness of subsidence. The blocks constructed between 1998–2005 and after 2005 showed considerably more subsidence unevenness and temporal instability than the blocks constructed before 1998 during both time periods. The examination of the new blocks showed that the spatial unevenness increased with building volume variability. For the 16 blocks with a high building volume, variability, and subsidence unevenness, the building-scale analysis showed a positive relationship between building volume and settlement in most blocks, although the R2 was lower than 0.5. The results indicate that intense building construction in urban areas could cause differential settlement at the block scale in Beijing, while the settlement of single buildings could be influenced by the integrated effects of building volume, foundation structures, and the hydrogeological background.
Journal Article
Comparative Study of Groundwater-Induced Subsidence for London and Delhi Using PSInSAR
2021
Groundwater variation can cause land-surface movement, which in turn can cause significant and recurrent harm to infrastructure and the water storage capacity of aquifers. The capital cities in the England (London) and India (Delhi) are witnessing an ever-increasing population that has resulted in excess pressure on groundwater resources. Thus, monitoring groundwater-induced land movement in both these cities is very important in terms of understanding the risk posed to assets. Here, Sentinel-1 C-band radar images and the persistent scatterer interferometric synthetic aperture radar (PSInSAR) methodology are used to study land movement for London and National Capital Territory (NCT)-Delhi from October 2016 to December 2020. The land movement velocities were found to vary between −24 and +24 mm/year for London and between −18 and +30 mm/year for NCT-Delhi. This land movement was compared with observed groundwater levels, and spatio-temporal variation of groundwater and land movement was studied in conjunction. It was broadly observed that the extraction of a large quantity of groundwater leads to land subsidence, whereas groundwater recharge leads to uplift. A mathematical model was used to quantify land subsidence/uplift which occurred due to groundwater depletion/rebound. This is the first study that compares C-band PSInSAR-derived land subsidence response to observed groundwater change for London and NCT-Delhi during this time-period. The results of this study could be helpful to examine the potential implications of ground-level movement on the resource management, safety, and economics of both these cities.
Journal Article
Displacement Monitoring in Airport Runways by Persistent Scatterers SAR Interferometry
by
Bianchini Ciampoli, Luca
,
Tosti, Fabio
,
Gagliardi, Valerio
in
accuracy
,
airport runway
,
Airports
2020
Deformations monitoring in airport runways and the surrounding areas is crucial, especially in cases of low-bearing capacity subgrades, such as the clayey subgrade soils. An effective monitoring of the infrastructure asset allows to secure the highest necessary standards in terms of the operational and safety requirements. Amongst the emerging remote sensing techniques for transport infrastructures monitoring, the Persistent Scatterers Interferometry (PSI) technique has proven effective for the evaluation of the ground deformations. However, its use for certain demanding applications, such as the assessment of millimetric differential deformations in airport runways, is still considered as an open issue for future developments. In this study, a time-series analysis of COSMO–SkyMed satellite images acquired from January 2015 to April 2019 is carried out by employing the PSI technique. The aim is to retrieve the mean deformation velocity and time series of the surface deformations occurring in airport runways. The technique is applied to Runway 3 at the “Leonardo da Vinci” International Airport in Rome, Italy. The proposed PSI technique is then validated by way of comparison with the deformation outcomes obtained on the runway by traditional topographic levelling over the same time span. The results of this study clearly demonstrate the efficiency and the accuracy of the applied PSI technique for the assessment of deformations in airport runways.
Journal Article