Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
3,775 result(s) for "Peptide Hormones - genetics"
Sort by:
Asprosin is a centrally acting orexigenic hormone
Asprosin, a recently identified secreted hormone from adipose tissue, acts centrally to promote food intake. Asprosin is a recently discovered fasting-induced hormone that promotes hepatic glucose production. Here we demonstrate that asprosin in the circulation crosses the blood–brain barrier and directly activates orexigenic AgRP + neurons via a cAMP-dependent pathway. This signaling results in inhibition of downstream anorexigenic proopiomelanocortin (POMC)-positive neurons in a GABA-dependent manner, which then leads to appetite stimulation and a drive to accumulate adiposity and body weight. In humans, a genetic deficiency in asprosin causes a syndrome characterized by low appetite and extreme leanness; this is phenocopied by mice carrying similar mutations and can be fully rescued by asprosin. Furthermore, we found that obese humans and mice had pathologically elevated concentrations of circulating asprosin, and neutralization of asprosin in the blood with a monoclonal antibody reduced appetite and body weight in obese mice, in addition to improving their glycemic profile. Thus, in addition to performing a glucogenic function, asprosin is a centrally acting orexigenic hormone that is a potential therapeutic target in the treatment of both obesity and diabetes.
AtPep3 is a hormone-like peptide that plays a role in the salinity stress tolerance of plants
Peptides encoded by small coding genes play an important role in plant development, acting in a similar manner as phytohormones. Few hormone-like peptides, however, have been shown to play a role in abiotic stress tolerance. In the current study, 17 Arabidopsis genes coding for small peptides were found to be up-regulated in response to salinity stress. To identify peptides leading salinity stress tolerance, we generated transgenic Arabidopsis plants overexpressing these small coding genes and assessed survivability and root growth under salinity stress conditions. Results indicated that 4 of the 17 overexpressed genes increased salinity stress tolerance. Further studies focused on AtPROPEP3, which was the most highly up-regulated gene under salinity stress. Treatment of plants with synthetic peptides encoded by AtPROPEP3 revealed that a C-terminal peptide fragment (AtPep3) inhibited the salt-induced bleaching of chlorophyll in seedlings. Conversely, knockdown AtPROPEP3 transgenic plants exhibited a hypersensitive phenotype under salinity stress, which was complemented by the AtPep3 peptide. This functional AtPep3 peptide region overlaps with an AtPep3 elicitor peptide that is related to the immune response of plants. Functional analyses with a receptor mutant of AtPep3 revealed that AtPep3 was recognized by the PEPR1 receptor and that it functions to increase salinity stress tolerance in plants. Collectively, these data indicate that AtPep3 plays a significant role in both salinity stress tolerance and immune response in Arabidopsis.
A peptide hormone required for Casparian strip diffusion barrier formation in Arabidopsis roots
Plants achieve mineral ion homeostasis by means of a hydrophobic barrier on endodermal cells called the Casparian strip, which restricts lateral diffusion of ions between the root vascular bundles and the soil. We identified a family of sulfated peptides required for contiguous Casparian strip formation in Arabidopsis roots. These peptide hormones, which we named Casparian strip integrity factor 1 (CIF1) and CIF2, are expressed in the root stele and specifically bind the endodermis-expressed leucine-rich repeat receptor kinase GASSHO1 (GSO1)/SCHENGEN3 and its homolog, GSO2. A mutant devoid of CIF peptides is defective in ion homeostasis in the xylem. CIF genes are environmentally responsive. Casparian strip regulation is not merely a passive process driven by root developmental cues; it also serves as an active strategy to cope with adverse soil conditions.
A Peptide Hormone and Its Receptor Protein Kinase Regulate Plant Cell Expansion
Plant cells are immobile; thus, plant growth and development depend on cell expansion rather than cell migration. The molecular mechanism by which the plasma membrane initiates changes in the cell expansion rate remains elusive. We found that a secreted peptide, RALF (rapid alkalinization factor), suppresses cell elongation of the primary root by activating the cell surface receptor FERONIA in Arabidopsis thaliana. A direct peptide-receptor interaction is supported by specific binding of RALF to FERONIA and reduced binding and insensitivity to RALF-induced growth inhibition in feronia mutants. Phosphoproteome measurements demonstrate that the RALF-FERONIA interaction causes phosphorylation of plasma membrane H+–adenosine triphosphatase 2 at Ser899, mediating the inhibition of proton transport. The results reveal a molecular mechanism for RALF-induced extracellular alkalinization and a signaling pathway that regulates cell expansion.
Processing of a plant peptide hormone precursor facilitated by posttranslational tyrosine sulfation
Most peptide hormones and growth factors are matured from larger inactive precursor proteins by proteolytic processing and further posttranslational modification. Whether or how posttranslational modifications contribute to peptide bioactivity is still largely unknown. We address this question here for TWS1 (Twisted Seed 1), a peptide regulator of embryonic cuticle formation in Arabidopsis thaliana. Using synthetic peptides encompassing the N- and C-terminal processing sites and the recombinant TWS1 precursor as substrates, we show that the precursor is cleaved by the subtilase SBT1.8 at both the N and the C termini of TWS1. Recognition and correct processing at the N-terminal site depended on sulfation of an adjacent tyrosine residue. Arginine 302 of SBT1.8 was found to be required for sulfotyrosine binding and for accurate processing of the TWS1 precursor. The data reveal a critical role for posttranslational modification, here tyrosine sulfation of a plant peptide hormone precursor, in mediating processing specificity and peptide maturation.
ERF115 Controls Root Quiescent Center Cell Division and Stem Cell Replenishment
The quiescent center (QC) plays an essential role during root development by creating a microenvironment that preserves the stem cell fate of its surrounding cells. Despite being surrounded by highly mitotic active cells, QC cells self-renew at a low proliferation rate. Here, we identified the ERF115 transcription factor as a rate-limiting factor of QC cell division, acting as a transcriptional activator of the phytosulfokine PSK5 peptide hormone. ERF115 marks QC cell division but is restrained through proteolysis by the APC/C CCS52A2 ubiquitin ligase, whereas QC proliferation is driven by brassinosteroid-dependent ERF115 expression. Together, these two antagonistic mechanisms delimit ERF115 activity, which is called upon when surrounding stem cells are damaged, revealing a cell cycle regulatory mechanism accounting for stem cell niche longevity.
Obestatin, a Peptide Encoded by the Ghrelin Gene, Opposes Ghrelin's Effects on Food Intake
Ghrelin, a circulating appetite-inducing hormone, is derived from a prohormone by posttranslational processing. On the basis of the bioinformatic prediction that another peptide also derived from proghrelin exists, we isolated a hormone from rat stomach and named it obestatin-a contraction of obese, from the Latin \"obedere,\" meaning to devour, and \"statin,\" denoting suppression. Contrary to the appetite-stimulating effects of ghrelin, treatment of rats with obestatin suppressed food intake, inhibited jejunal contraction, and decreased body-weight gain. Obestatin bound to the orphan G protein-coupled receptor GPR39. Thus, two peptide hormones with opposing action in weight regulation are derived from the same ghrelin gene. After differential modification, these hormones activate distinct receptors.
ANGPTL8 negatively regulates NF-κB activation by facilitating selective autophagic degradation of IKKγ
Excessive nuclear factor-κB (NF-κB) activation mediated by tumor necrosis factor α (TNFα) plays a critical role in inflammation. Here we demonstrate that angiopoietin-like 8 (ANGPTL8) functions as a negative feedback regulator in TNFα-triggered NF-κB activation intracellularly. Inflammatory stimuli induce ANGPTL8 expression, and knockdown or knockout of ANGPTL8 potentiates TNFα-induced NF-κB activation in vitro. Mechanistically, upon TNFα stimulation, ANGPTL8 facilitates the interaction of IKKγ with p62 via forming a complex, thus promoting the selective autophagic degradation of IKKγ. Furthermore, the N-terminal domain mediated self-oligomerization of ANGPTL8 is essential for IKKγ degradation and NF-κB activation. In vivo, circulating ANGPTL8 level is high in patients diagnosed with infectious diseases, and the ANGPTL8/p62-IKKγ axis is responsive to inflammatory stimuli in the liver of LPS-injected mice. Altogether, our study suggests the ANGPTL8/p62-IKKγ axis as a negative feedback loop that regulates NF-κB activation, and extends the role of selective autophagy in fine-tuned inflammatory responses. NF-κB activation mediated by TNFα has a critical role in inflammation; however, the underlying mechanisms await further investigation. Here the authors show that selective autophagy regulates NF-κB activation via an ANGPTL8/p62-IKKγ signaling axis.
The G Protein β -Subunit, AGB1, Interacts with FERONIA in RALF1-Regulated Stomatal Movement
Heterotrimeric guanine nucleotide-binding (G) proteins are composed of Gα, G , and Gγ subunits and function as molecular switches in signal transduction. In Arabidopsis ( ), there are one canonical Gα (GPA1), three extra-large Gα (XLG1, XLG2, and XLG3), one G (AGB1), and three Gγ (AGG1, AGG2, and AGG3) subunits. To elucidate AGB1 molecular signaling, we performed immunoprecipitation using plasma membrane-enriched proteins followed by mass spectrometry to identify the protein interactors of AGB1. After eliminating proteins present in the control immunoprecipitation, commonly identified contaminants, and organellar proteins, a total of 103 candidate AGB1-associated proteins were confidently identified. We identified all of the G protein subunits except XLG1, receptor-like kinases, Ca signaling-related proteins, and 14-3-3-like proteins, all of which may couple with or modulate G protein signaling. We confirmed physical interaction between AGB1 and the receptor-like kinase FERONIA (FER) using bimolecular fluorescence complementation. The Rapid Alkalinization Factor (RALF) family of polypeptides have been shown to be ligands of FER. In this study, we demonstrate that RALF1 regulates stomatal apertures and does so in a G protein-dependent manner, inhibiting stomatal opening and promoting stomatal closure in Columbia but not in mutants. We further show that AGGs and XLGs, but not GPA1, participate in RALF1-mediated stomatal signaling. Our results suggest that FER acts as a G protein-coupled receptor for plant heterotrimeric G proteins.
Association Between Ghrelin Gene Variations and Blood Pressure in Subjects With Impaired Glucose Tolerance
Ghrelin is a gut–brain hormone, which stimulates food intake and controls energy balance. Recently, it has been shown that ghrelin may also play a role in the regulation of blood pressure (BP) by acting at the sympathetic nervous system. In the present study we genotyped six variants of the ghrelin gene and its promoter, and tested whether these single nucleotide polymorphisms (SNPs) were associated with BP levels in participants of the Finnish Diabetes Prevention Study. The Finnish Diabetes Prevention Study was a longitudinal study where 522 subjects with impaired glucose tolerance were randomized into either an intervention or control group. DNA was available from 507 subjects (mean body mass index [BMI] 31.2 ± 4.5 kg/m 2, age 55 ± 7 years). All six SNPs were screened by the restriction fragment length polymorphism method. Subjects with the most common genotype combination of the following four SNPs, -604G/A, -501A/C, Leu72Met, and Gln90Leu, had the lowest systolic (131 ± 11 v 137 ± 13 mm Hg, P = .003) and diastolic BP levels (79 ± 7 v 83 ± 7 mm Hg, P = .004) at the baseline of the study and during 3 years of follow-up compared to all other genotypes. Adjustments for age, gender, antihypertensive medication, BMI, waist circumference, and alcohol intake did not change this association. Several ghrelin gene variations were associated with BP levels in subjects with impaired glucose tolerance.