Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
1,512 result(s) for "Periodontitis - immunology"
Sort by:
The role of NF-kappaB in the inflammatory processes related to dental caries, pulpitis, apical periodontitis, and periodontitis–a narrative review
Tooth-related inflammatory disorders, including caries, pulpitis, apical periodontitis (AP), and periodontitis (PD), are primarily caused by resident oral microorganisms. Although these dental inflammatory conditions are typically not life-threatening, neglecting them can result in significant complications and greatly reduce an individual’s quality of life. Nuclear factor κB (NF-κB), a family formed by various combinations of Rel proteins, is extensively involved in inflammatory diseases and even cancer. This study reviews recent data on NF-κB signaling and its role in dental pulp stem cells (DPSCs), dental pulp fibroblasts (DPFs), odontoblasts, human periodontal ligament cells (hPDLCs), and various experimental animal models. The findings indicate that NF-κB signaling is abnormally activated in caries, pulpitis, AP, and PD, leading to changes in related cellular differentiation. Under specific conditions, NF-κB signaling occasionally interacts with other signaling pathways, affecting inflammation, bone metabolism, and tissue regeneration processes. In summary, data collected over recent years confirm the central role of NF-κB in dental inflammatory diseases, potentially providing new insights for drug development targeting NF-κB signaling pathways in the treatment of these conditions. Keywords: NF-κB, dental caries, pulpitis, apical periodontitis, periodontitis.
Chemokines in Oral Inflammatory Diseases : Apical Periodontitis and Periodontal Disease
The inflammatory oral diseases are characterized by the persistent migration of polymorphonuclear leukocytes, monocytes, lymphocytes, plasma and mast cells, and osteoblasts and osteoclasts. In the last decade, there has been a great interest in the mediators responsible for the selective recruitment and activation of these cell types at inflammatory sites. Of these mediators, the chemokines have received particular attention in recent years. Chemokine messages are decoded by specific receptors that initiate signal transduction events, leading to a multitude of cellular responses, including chemotaxis and activation of inflammatory and bone cells. However, little is known about their role in the pathogenesis of inflammatory oral diseases. The purpose of this review is to summarize the findings regarding the role of chemokines in periapical and periodontal tissue inflammation, and the integration, into experimental models, of the information about the role of chemokines in human diseases.
Artificial Neural Networks for the Diagnosis of Aggressive Periodontitis Trained by Immunologic Parameters
There is neither a single clinical, microbiological, histopathological or genetic test, nor combinations of them, to discriminate aggressive periodontitis (AgP) from chronic periodontitis (CP) patients. We aimed to estimate probability density functions of clinical and immunologic datasets derived from periodontitis patients and construct artificial neural networks (ANNs) to correctly classify patients into AgP or CP class. The fit of probability distributions on the datasets was tested by the Akaike information criterion (AIC). ANNs were trained by cross entropy (CE) values estimated between probabilities of showing certain levels of immunologic parameters and a reference mode probability proposed by kernel density estimation (KDE). The weight decay regularization parameter of the ANNs was determined by 10-fold cross-validation. Possible evidence for 2 clusters of patients on cross-sectional and longitudinal bone loss measurements were revealed by KDE. Two to 7 clusters were shown on datasets of CD4/CD8 ratio, CD3, monocyte, eosinophil, neutrophil and lymphocyte counts, IL-1, IL-2, IL-4, INF-γ and TNF-α level from monocytes, antibody levels against A. actinomycetemcomitans (A.a.) and P.gingivalis (P.g.). ANNs gave 90%-98% accuracy in classifying patients into either AgP or CP. The best overall prediction was given by an ANN with CE of monocyte, eosinophil, neutrophil counts and CD4/CD8 ratio as inputs. ANNs can be powerful in classifying periodontitis patients into AgP or CP, when fed by CE values based on KDE. Therefore ANNs can be employed for accurate diagnosis of AgP or CP by using relatively simple and conveniently obtained parameters, like leukocyte counts in peripheral blood. This will allow clinicians to better adapt specific treatment protocols for their AgP and CP patients.
Interleukin Gene Variability and Periodontal Bacteria in Patients with Generalized Aggressive Form of Periodontitis
Host genetic predispositions to dysregulated immune response can influence the development of the aggressive form of periodontitis (AgP) through susceptibility to oral dysbiosis and subsequent host-microbe interaction. This case-control study aimed to perform a multilocus analysis of functional variants in selected interleukin (IL) genes in patients with the generalized form of AgP in a homogenous population. Twelve polymorphisms in IL-1 gene cluster, IL-6 and its receptor, IL-10, IL-17A, and IL-18 were determined in 91 AgP patients and 210 controls. Analysis of seven selected periodontal bacteria in subgingival sulci/pockets was performed with a commercial DNA-microarray kit in a subgroup of 76 individuals. The pilot in vitro study included stimulation of peripheral blood monocytes (PBMC) from 20 individuals with periodontal bacteria and measurement of IL-10 levels using the Luminex method. Only the unctional polymorphism IL-10 −1087 A/G (rs1800896) and specific IL-10 haplotypes were associated with the development of the disease (p < 0.05, Pcorr > 0.05). Four bacterial species occurred more frequently in AgP than in controls (p < 0.01, Pcorr < 0.05). Elevated IL-10 levels were found in AgP patients, carriers of IL-10 −1087GG genotype, and PBMCs stimulated by periodontal bacteria (p < 0.05, Pcorr > 0.05). We therefore conclude that a combination of genetic predisposition to the altered expression of IL-10 and the presence of specific periodontal bacteria may contribute to Th1/Th2 balance disruption and AgP development.
Association of levels of antibodies against citrullinated cyclic peptides and citrullinated α-enolase in chronic and aggressive periodontitis as a risk factor of Rheumatoid arthritis: a case control study
Background Periodontal disease could be a risk factor for rheumatoid arthritis (RA). It is assumed that the bacterial strain Porphyromonas gingivalis mediates citrullination of host peptides and thereby the generation of RA-associated autoantibodies in genetically predisposed individuals. For that reason non-RA individuals who suffered from generalized aggressive (GAgP, N = 51) and generalized chronic periodontitis (GChP, N = 50) were investigated regarding the occurrence of antibodies against citrullinated cyclic peptides (anti-CCP) and citrullinated α-enolase peptide-1 (anti-CEP-1) in comparison to non-RA non-periodontitis controls (N = 89). Furthermore, putative associations between infections with five periodontopathic bacteria or expression of certain human leucocyte antigens (HLA) to these autoantibodies were investigated. Methods The presence of anti-CCP and anti-CEP-1 in plasma samples was conducted with enzyme linked immunosorbent assay. Subgingival plaque specimens were taken from the deepest pocket of each quadrant and pooled. For detection of DNA of five periodontopathic bacteria PCR with sequence specific oligonucleotides was carried out. Low resolution HLA typing was carried out with PCR with sequence specific primers. Differences between patients and controls were assessed using Chi square test with Yates correction or Fisher`s exact test if the expected number n in one group was <5. Results Two patients with GAgP (3.9 %), no patient with GChP and two controls (2.2 %, p Fisher  = 0.662) were positive for anti-CEP-1 whereas no study participant was anti-CCP positive. Individuals with P. gingivalis were slightly more often anti-CEP-1 positive in comparison to individuals without P. gingivalis (3.2 vs. 1.1 %, p Fisher  = 0.366). Carrier of HLA-DQB1*06 or the HLA combination DRB1*13; DRB3*; DQB1*06 were slightly more anti-CEP-1 positive (6.1 and 4.3 %) than no carriers (0.7 and 0 %, p Fisher 0.053). Conclusions GAgP and GChP and the presence of periodontopathic bacteria are not associated with an increased risk for occurrence of anti-CCP and anti-CEP-1 autoantibodies. The putative relationship between periodontitis and RA should be investigated in further studies.
Periodontitis: from microbial immune subversion to systemic inflammation
Key Points Periodontitis is a dysbiotic oral disease that increases the patients' risk of developing systemic inflammatory disorders. The dysbiosis of the periodontal microbiota is characterized by an imbalance in the relative abundance or influence of microbial species with distinct roles that converge to shape a pathogenic microbial community. Within the community, periodontal bacteria use sophisticated strategies to evade immune-mediated killing while promoting a nutritionally favourable inflammatory response. The host response is initially subverted by keystone pathogens with the aid of accessory pathogens and is subsequently overactivated by the emerging pathobionts, which leads to destructive inflammation. Periodontal bacteria (including Porphyromonas gingivalis ) have been detected in circulating leukocytes and in aortic tissues, where clinical and mechanistic animal-model studies indicate that they act as pro-atherogenic stimuli. P. gingivalis expresses a unique citrullinating enzyme that is involved in the generation of autoantibodies that contribute to the pathogenesis of rheumatoid arthritis. Bacteria that originate from the periodontal tissue (such as Fusobacterium nucleatum ) have been detected in the placenta, where they can cause adverse pregnancy outcomes, as suggested by clinical and mechanistic evidence. The periodontal biofilm also acts as a reservoir for respiratory infections and for exacerbations of chronic obstructive pulmonary disease in synergy with local opportunistic pathogens. Understanding how oral pathogens subvert the host response at the molecular level will not only provide insights into the pathogenesis of periodontitis and associated systemic conditions, but could also reveal new therapeutic targets. Periodontitis has been linked to systemic inflammatory conditions such as rheumatoid arthritis. In this Review, the author summarizes these links and discusses the mechanisms of microbial immune subversion that tip the balance from homeostasis to disease at oral or distant sites. Periodontitis is a dysbiotic inflammatory disease with an adverse impact on systemic health. Recent studies have provided insights into the emergence and persistence of dysbiotic oral microbial communities that can mediate inflammatory pathology at local as well as distant sites. This Review discusses the mechanisms of microbial immune subversion that tip the balance from homeostasis to disease in oral or extra-oral sites.
Periodontitis induced by Porphyromonas gingivalis drives periodontal microbiota dysbiosis and insulin resistance via an impaired adaptive immune response
ObjectiveTo identify a causal mechanism responsible for the enhancement of insulin resistance and hyperglycaemia following periodontitis in mice fed a fat-enriched diet.DesignWe set-up a unique animal model of periodontitis in C57Bl/6 female mice by infecting the periodontal tissue with specific and alive pathogens like Porphyromonas gingivalis (Pg), Fusobacterium nucleatum and Prevotella intermedia. The mice were then fed with a diabetogenic/non-obesogenic fat-enriched diet for up to 3 months. Alveolar bone loss, periodontal microbiota dysbiosis and features of glucose metabolism were quantified. Eventually, adoptive transfer of cervical (regional) and systemic immune cells was performed to demonstrate the causal role of the cervical immune system.ResultsPeriodontitis induced a periodontal microbiota dysbiosis without mainly affecting gut microbiota. The disease concomitantly impacted on the regional and systemic immune response impairing glucose metabolism. The transfer of cervical lymph-node cells from infected mice to naive recipients guarded against periodontitis-aggravated metabolic disease. A treatment with inactivated Pg prior to the periodontal infection induced specific antibodies against Pg and protected the mouse from periodontitis-induced dysmetabolism. Finally, a 1-month subcutaneous chronic infusion of low rates of lipopolysaccharides from Pg mimicked the impact of periodontitis on immune and metabolic parameters.ConclusionsWe identified that insulin resistance in the high-fat fed mouse is enhanced by pathogen-induced periodontitis. This is caused by an adaptive immune response specifically directed against pathogens and associated with a periodontal dysbiosis.
Host defense against oral microbiota by bone-damaging T cells
The immune system evolved to efficiently eradicate invading bacteria and terminate inflammation through balancing inflammatory and regulatory T-cell responses. In autoimmune arthritis, pathogenic T H 17 cells induce bone destruction and autoimmune inflammation. However, whether a beneficial function of T-cell-induced bone damage exists is unclear. Here, we show that bone-damaging T cells have a critical function in the eradication of bacteria in a mouse model of periodontitis, which is the most common infectious disease. Bacterial invasion leads to the generation of specialized T H 17 cells that protect against bacteria by evoking mucosal immune responses as well as inducing bone damage, the latter of which also inhibits infection by removing the tooth. Thus, bone-damaging T cells, which may have developed to stop local infection by inducing tooth loss, function as a double-edged sword by protecting against pathogens while also inducing skeletal tissue degradation. IL-17-producing T cells are protective against infection, but the authors of this article previously showed that these cells also contribute to inflammatory bone destruction. Here they show in the context of periodontitis that microbiota-driven Th17-mediated bone destruction may actually be a physiological rather than a pathological process, as associated tooth loss prevents dissemination of oral bacteria.
Polarized Macrophages in Periodontitis: Characteristics, Function, and Molecular Signaling
Periodontitis (PD) is a common chronic infectious disease. The local inflammatory response in the host may cause the destruction of supporting periodontal tissue. Macrophages play a variety of roles in PD, including regulatory and phagocytosis. Moreover, under the induction of different factors, macrophages polarize and form different functional phenotypes. Among them, M1-type macrophages with proinflammatory functions and M2-type macrophages with anti-inflammatory functions are the most representative, and both of them can regulate the tendency of the immune system to exert proinflammatory or anti-inflammatory functions. M1 and M2 macrophages are involved in the destructive and reparative stages of PD. Due to the complex microenvironment of PD, the dynamic development of PD, and various local mediators, increasing attention has been given to the study of macrophage polarization in PD. This review summarizes the role of macrophage polarization in the development of PD and its research progress.
Immunomodulation in the Treatment of Periodontitis: Progress and Perspectives
Periodontitis is one of the most common dental diseases. Compared with healthy periodontal tissues, the immune microenvironment plays the key role in periodontitis by allowing the invasion of pathogens. It is possible that modulating the immune microenvironment can supplement traditional treatments and may even promote periodontal regeneration by using stem cells, bacteria, etc. New anti-inflammatory therapies can enhance the generation of a viable local immune microenvironment and promote cell homing and tissue formation, thereby achieving higher levels of immune regulation and tissue repair. We screened recent studies to summarize the advances of the immunomodulatory treatments for periodontitis in the aspects of drug therapy, microbial therapy, stem cell therapy, gene therapy and other therapies. In addition, we included the changes of immune cells and cytokines in the immune microenvironment of periodontitis in the section of drug therapy so as to make it clearer how the treatments took effects accordingly. In the future, more research needs to be done to improve immunotherapy methods and understand the risks and long-term efficacy of these methods in periodontitis.