Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
4,206
result(s) for
"Phenylalanine - chemistry"
Sort by:
Phenylalanine Butyramide: A Butyrate Derivative as a Novel Inhibitor of Tyrosinase
by
Di Serio, Teresa
,
Morelli, Elena
,
Di Lorenzo, Ritamaria
in
Adult
,
Agaricales - enzymology
,
Butyrates - chemistry
2024
Metabolites resulting from the bacterial fermentation of dietary fibers, such as short-chain fatty acids, especially butyrate, play important roles in maintaining gut health and regulating various biological effects in the skin. However, butyrate is underutilized due to its unpleasant odor. To circumvent this organoleptic unfavorable property, phenylalanine butyramide (PBA), a butyrate precursor, has been synthesized and is currently available on the market. We evaluated the inhibition of mushroom tyrosinase by butyrate and PBA through in vitro assays, finding IC50 values of 34.7 mM and 120.3 mM, respectively. Docking calculations using a homology model of human tyrosinase identified a putative binding mode of PBA into the catalytic site. The anti-aging and anti-spot efficacy of topical PBA was evaluated in a randomized, double-blind, parallel-arm, placebo-controlled clinical trial involving 43 women affected by photo-damage. The results of this study showed that PBA significantly improved skin conditions compared to the placebo and was well tolerated. Specifically, PBA demonstrated strong skin depigmenting activity on both UV and brown spots (UV: −12.7% and −9.9%, Bs: −20.8% and −17.7% after 15 and 30 days, respectively, p < 0.001). Moreover, PBA brightened and lightened the skin (ITA°: +12% and 13% after 15 and 30 days, respectively, p < 0.001). Finally, PBA significantly improved skin elasticity (Ua/Uf: +12.4% and +32.3% after 15 and 30 days, respectively, p < 0.001) and firmness (Uf: −3.2% and −14.9% after 15 and 30 days, respectively, p < 0.01).
Journal Article
Direct asymmetric synthesis of β-branched aromatic α-amino acids using engineered phenylalanine ammonia lyases
2024
β-Branched aromatic α-amino acids are valuable building blocks in natural products and pharmaceutically active compounds. However, their chemical or enzymatic synthesis is challenging due to the presence of two stereocenters. We design phenylalanine ammonia lyases (PAL) variants for the direct asymmetric synthesis of β-branched aromatic α-amino acids. Based on extensive computational analyses, we unravel the enigma behind PAL’s inability to accept β-methyl cinnamic acid (β-MeCA) as substrate and achieve the synthesis of the corresponding amino acids of β-MeCA and analogs using a double (PcPAL-L256V-I460V) and a triple mutant (PcPAL-F137V-L256V-I460V). The reactions are scaled-up using an optimized
E. coli
based whole-cell biotransformation system to produce ten β-branched phenylalanine analogs with high diastereoselectivity (dr > 20:1) and enantioselectivity (ee > 99.5%) in yields ranging from 41-71%. Moreover, we decipher the mechanism of PcPAL-L256V-I460V for the acceptance of β-MeCA and converting it with excellent stereoselectivity by computational simulations. Thus, this study offers an efficient method for synthesizing β-branched aromatic α-amino acids.
β-Branched aromatic α-amino acids are valuable building blocks in natural products and pharmaceutically active compounds, but their synthesis is challenging due to the presence of two stereocenters. Here, the authors design phenylalanine ammonia lyases variants for the direct asymmetric synthesis of β-branched aromatic α-amino acids and reveal the reasons for enzyme’s inability to accept β-methyl cinnamic acid.
Journal Article
Determination of L-Phenylalanine in Human Plasma Samples with New Fluorometric Method
2022
The measurement of phenylalanine in biological fluids for the diagnosis of phenylketonuria (PKU) in newborns and the monitoring/therapeutic drug monitoring of individuals with PKU are especially important. Owing to the importance of PKU monitoring in clinical medicine, a new fluorometric method was developed for the determination of L-phenylalanine in serum samples. This method is based on the relationship between phenylalanine ammonia-lyase (PAL) and o-phthalaldehyde (OPA). PAL catalyzes the conversion of phenylalanine to ammonia and trans-cinnamic acid. The formed ammonia reacts with OPA in the presence of sodium sulfite, giving a fluorescent product. The presence of sulfide in an alkaline environment prevents OPA from reacting with other amino acids while allowing it to react only with ammonia. Method characterization and optimization studies, such as the effects of pH, temperature, and interferents, were carried out. The amount of L-phenylalanine in a human serum sample was successfully determined by using the fluorescence emission intensity of the fluorescent product formed as a result of the reaction between OPA and ammonia. The linear range of the method is between 10 μM and 10 mM. The obtained result showed good agreement with the results of the biochemistry analysis laboratory. Recoveries of 95.41% and 73.39% were obtained for phenylalanine and ammonia, respectively. This PAL–OPA–based fluorometric method for phenylalanine is practical, easy to operate, low cost, highly sensitive, and selective and can also be used for the simultaneous determination of ammonia in human serum samples.
Journal Article
One-Pot Enzymatic Synthesis of d-Arylalanines Using Phenylalanine Ammonia Lyase and l-Amino Acid Deaminase
2019
The phenylalanine ammonia-lyase (AvPAL) from Anabaena variabilis catalyzes the amination of substituent trans-cinnamic acid (t-CA) to produce racemic d,l-enantiomer arylalanine mixture owing to its low stereoselectivity. To produce high optically pure d-arylalanine, a modified AvPAL with high d-selectivity is expected. Based on the analyses of catalytic mechanism and structure, the Asn347 residue in the active site was proposed to control stereoselectivity. Therefore, Asn347 was mutated to construct mutant AvPAL-N347A, the stereoselectivity of AvPAL-N347A for d-enantiomer arylalanine was 2.3-fold higher than that of wild-type AvPAL (WtPAL). Furthermore, the residual l-enantiomer product in reaction solution could be converted into the d-enantiomer product through stereoselective oxidation by PmLAAD and nonselective reduction by reducing agent NH3BH3. At optimal conditions, the conversion rate of t-CA and optical purity (enantiomeric excess (eeD)) of d-phenylalanine reached 82% and exceeded 99%, respectively. The two enzymes displayed activity toward a broad range of substrate and could be used to efficiently synthesize d-arylalanine with different groups on the phenyl ring. Among these d-arylalanines, the yield of m-nitro-d-phenylalanine was highest and reached 96%, and the eeD exceeded 99%. This one-pot synthesis using AvPAL and PmLAAD has prospects for industrial application.
Journal Article
Structure and drug binding of the SARS-CoV-2 envelope protein transmembrane domain in lipid bilayers
by
Dregni, Aurelio J
,
Shcherbakov, Alexander A
,
Hong, Mei
in
Amiloride
,
Antiviral agents
,
Antiviral drugs
2020
An essential protein of the SARS-CoV-2 virus, the envelope protein E, forms a homopentameric cation channel that is important for virus pathogenicity. Here we report a 2.1-Å structure and the drug-binding site of E’s transmembrane domain (ETM), determined using solid-state NMR spectroscopy. In lipid bilayers that mimic the endoplasmic reticulum–Golgi intermediate compartment (ERGIC) membrane, ETM forms a five-helix bundle surrounding a narrow pore. The protein deviates from the ideal α-helical geometry due to three phenylalanine residues, which stack within each helix and between helices. Together with valine and leucine interdigitation, these cause a dehydrated pore compared with the viroporins of influenza viruses and HIV. Hexamethylene amiloride binds the polar amino-terminal lumen, whereas acidic pH affects the carboxy-terminal conformation. Thus, the N- and C-terminal halves of this bipartite channel may interact with other viral and host proteins semi-independently. The structure sets the stage for designing E inhibitors as antiviral drugs.A solid-state NMR structure of the transmembrane domain from SARS-CoV-2 envelope protein in the phospholipid environment reveals determinants of cation selectivity, a dehydrated pore and an N-terminal drug-binding site.
Journal Article
Serum phenylalanine in patients post trauma and with sepsis correlate to neopterin concentrations
2008
Increased blood concentrations of phenylalanine in patients with trauma and sepsis are common but unexplained. We examined the potential relationship between serum concentrations of phenylalanine and the immune activation marker neopterin in 84 specimens of 18 patients (14 males and 4 females) post-trauma during 12–14 days of follow up. Compared to healthy controls, average phenylalanine and neopterin concentrations were elevated in patients, and there existed a positive correlation between concentrations of the two analytes (rs = 0.375, p < 0.001). No such association existed between neopterin and tyrosine concentrations (rs = −0.018), but neopterin concentrations correlated to the phenylalanine to tyrosine ratio (rs = 0.328, p = 0.001).Increased phenylalanine implies insufficient conversion by phenylalanine (4)-hydroxylase (PAH). Oxidative stress due to immune activation and inflammation may destroy cofactor 5,6,7,8-tetrahydrobiopterin and impair PAH activity. This assumption is further supported by the correlation found between higher neopterin concentrations and higher phenylalanine to tyrosine ratio, which estimates efficacy of PAH.
Journal Article
Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses
2014
In the past decade, attosecond technology has opened up the investigation of ultrafast electronic processes in atoms, simple molecules, and solids. Here, we report the application of isolated attosecond pulses to prompt ionization of the amino acid phenylalanine and the subsequent detection of ultrafast dynamics on a sub–4.5-femtosecond temporal scale, which is shorter than the vibrational response of the molecule. The ability to initiate and observe such electronic dynamics in polyatomic molecules represents a crucial step forward in attosecond science, which is progressively moving toward the investigation of more and more complex systems.
Journal Article
Efficient Preparation of Enantiopure D-Phenylalanine through Asymmetric Resolution Using Immobilized Phenylalanine Ammonia-Lyase from Rhodotorula glutinis JN-1 in a Recirculating Packed-Bed Reactor
2014
An efficient enzymatic process was developed to produce optically pure D-phenylalanine through asymmetric resolution of the racemic DL-phenylalanine using immobilized phenylalanine ammonia-lyase (RgPAL) from Rhodotorula glutinis JN-1. RgPAL was immobilized on a modified mesoporous silica support (MCM-41-NH-GA). The resulting MCM-41-NH-GA-RgPAL showed high activity and stability. The resolution efficiency using MCM-41-NH-GA-RgPAL in a recirculating packed-bed reactor (RPBR) was higher than that in a stirred-tank reactor. Under optimal operational conditions, the volumetric conversion rate of L-phenylalanine and the productivity of D-phenylalanine reached 96.7 mM h⁻¹ and 0.32 g L⁻¹ h⁻¹, respectively. The optical purity (eeD) of D-phenylalanine exceeded 99%. The RPBR ran continuously for 16 batches, the conversion ratio did not decrease. The reactor was scaled up 25-fold, and the productivity of D-phenylalanine (eeD>99%) in the scaled-up reactor reached 7.2 g L⁻¹ h⁻¹. These results suggest that the resolution process is an alternative method to produce highly pure D-phenylalanine.
Journal Article
Self-assembling dipeptide antibacterial nanostructures with membrane disrupting activity
by
Brahmachari, Sayanti
,
Shimon, Linda J. W.
,
Shaham-Niv, Shira
in
631/326/22
,
631/61/54
,
639/638/541/966
2017
Peptide-based supramolecular assemblies are a promising class of nanomaterials with important biomedical applications, specifically in drug delivery and tissue regeneration. However, the intrinsic antibacterial capabilities of these assemblies have been largely overlooked. The recent identification of common characteristics shared by antibacterial and self-assembling peptides provides a paradigm shift towards development of antibacterial agents. Here we present the antibacterial activity of self-assembled diphenylalanine, which emerges as the minimal model for antibacterial supramolecular polymers. The diphenylalanine nano-assemblies completely inhibit bacterial growth, trigger upregulation of stress-response regulons, induce substantial disruption to bacterial morphology, and cause membrane permeation and depolarization. We demonstrate the specificity of these membrane interactions and the development of antibacterial materials by integration of the peptide assemblies into tissue scaffolds. This study provides important insights into the significance of the interplay between self-assembly and antimicrobial activity and establishes innovative design principles toward the development of antimicrobial agents and materials.
Peptide-based supramolecular assemblies are a promising class of nanomaterials with important biomedical applications, but their antibacterial properties can be overlooked. Here the authors show the antibacterial activity of self-assembled diphenylalanine, which emerges as the minimal model for antibacterial supramolecular polymers.
Journal Article
Metal-ion-chelating phenylalanine nanostructures reverse immune dysfunction and sensitize breast tumour to immune checkpoint blockade
2024
An immunosuppressive tumour microenvironment strongly influences response rates in patients receiving immune checkpoint blockade-based cancer immunotherapies, such as programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1). Here we demonstrate that metal-ion-chelating
l
-phenylalanine nanostructures synergize with short-term starvation (STS) to remodel the immunosuppressive microenvironment of breast and colorectal tumours. These nanostructures modulate the electrophysiological behaviour of dendritic cells and activate them through the NLRP3 inflammasome and calcium-mediated nuclear factor-κB pathway. STS promotes the cellular uptake of nanostructures through amino acid transporters and plays a key role in dendritic cell maturation and tumour-specific cytotoxic T lymphocyte responses. This study demonstrates the potential role of metal-ion-chelating
l
-phenylalanine nanostructures in activating immune responses and the effect of STS treatment in improving nanomaterial-mediated cancer immunotherapy.
Metal-ion-chelating phenylalanine nanostructures modulate ion influx and efflux in dendritic cells, activating them through the NLRP3 inflammasome and NF-κB pathway to remodel the immunosuppressive tumour microenvironment for PD-L1-based immunotherapy.
Journal Article