MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Direct asymmetric synthesis of β-branched aromatic α-amino acids using engineered phenylalanine ammonia lyases
Direct asymmetric synthesis of β-branched aromatic α-amino acids using engineered phenylalanine ammonia lyases
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Direct asymmetric synthesis of β-branched aromatic α-amino acids using engineered phenylalanine ammonia lyases
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Direct asymmetric synthesis of β-branched aromatic α-amino acids using engineered phenylalanine ammonia lyases
Direct asymmetric synthesis of β-branched aromatic α-amino acids using engineered phenylalanine ammonia lyases

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Direct asymmetric synthesis of β-branched aromatic α-amino acids using engineered phenylalanine ammonia lyases
Direct asymmetric synthesis of β-branched aromatic α-amino acids using engineered phenylalanine ammonia lyases
Journal Article

Direct asymmetric synthesis of β-branched aromatic α-amino acids using engineered phenylalanine ammonia lyases

2024
Request Book From Autostore and Choose the Collection Method
Overview
β-Branched aromatic α-amino acids are valuable building blocks in natural products and pharmaceutically active compounds. However, their chemical or enzymatic synthesis is challenging due to the presence of two stereocenters. We design phenylalanine ammonia lyases (PAL) variants for the direct asymmetric synthesis of β-branched aromatic α-amino acids. Based on extensive computational analyses, we unravel the enigma behind PAL’s inability to accept β-methyl cinnamic acid (β-MeCA) as substrate and achieve the synthesis of the corresponding amino acids of β-MeCA and analogs using a double (PcPAL-L256V-I460V) and a triple mutant (PcPAL-F137V-L256V-I460V). The reactions are scaled-up using an optimized E. coli based whole-cell biotransformation system to produce ten β-branched phenylalanine analogs with high diastereoselectivity (dr > 20:1) and enantioselectivity (ee > 99.5%) in yields ranging from 41-71%. Moreover, we decipher the mechanism of PcPAL-L256V-I460V for the acceptance of β-MeCA and converting it with excellent stereoselectivity by computational simulations. Thus, this study offers an efficient method for synthesizing β-branched aromatic α-amino acids. β-Branched aromatic α-amino acids are valuable building blocks in natural products and pharmaceutically active compounds, but their synthesis is challenging due to the presence of two stereocenters. Here, the authors design phenylalanine ammonia lyases variants for the direct asymmetric synthesis of β-branched aromatic α-amino acids and reveal the reasons for enzyme’s inability to accept β-methyl cinnamic acid.