Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
287 result(s) for "Photochemistry - instrumentation"
Sort by:
Autonomous mobile robots for exploratory synthetic chemistry
Autonomous laboratories can accelerate discoveries in chemical synthesis, but this requires automated measurements coupled with reliable decision-making 1 , 2 . Most autonomous laboratories involve bespoke automated equipment 3 – 6 , and reaction outcomes are often assessed using a single, hard-wired characterization technique 7 . Any decision-making algorithms 8 must then operate using this narrow range of characterization data 9 , 10 . By contrast, manual experiments tend to draw on a wider range of instruments to characterize reaction products, and decisions are rarely taken based on one measurement alone. Here we show that a synthesis laboratory can be integrated into an autonomous laboratory by using mobile robots 11 – 13 that operate equipment and make decisions in a human-like way. Our modular workflow combines mobile robots, an automated synthesis platform, a liquid chromatography–mass spectrometer and a benchtop nuclear magnetic resonance spectrometer. This allows robots to share existing laboratory equipment with human researchers without monopolizing it or requiring extensive redesign. A heuristic decision-maker processes the orthogonal measurement data, selecting successful reactions to take forward and automatically checking the reproducibility of any screening hits. We exemplify this approach in the three areas of structural diversification chemistry, supramolecular host–guest chemistry and photochemical synthesis. This strategy is particularly suited to exploratory chemistry that can yield multiple potential products, as for supramolecular assemblies, where we also extend the method to an autonomous function assay by evaluating host–guest binding properties. A modular autonomous platform for general exploratory synthetic chemistry uses mobile robots to integrate an automated synthesis platform and two analysis platforms.
Programmable artificial phototactic microswimmer
Phototaxis is commonly observed in motile photosynthetic microorganisms. For example, green algae are capable of swimming towards a light source (positive phototaxis) to receive more energy for photosynthesis, or away from a light source (negative phototaxis) to avoid radiation damage or to hide from predators. Recently, with the aim of applying nanoscale machinery to biomedical applications, various inorganic nanomotors based on different propulsion mechanisms have been demonstrated. The only method to control the direction of motion of these self-propelled micro/nanomotors is to incorporate a ferromagnetic material into their structure and use an external magnetic field for steering. Here, we show an artificial microswimmer that can sense and orient to the illumination direction of an external light source. Our microswimmer is a Janus nanotree containing a nanostructured photocathode and photoanode at opposite ends that release cations and anions, respectively, propelling the microswimmer by self-electrophoresis. Using chemical modifications, we can control the zeta potential of the photoanode and program the microswimmer to exhibit either positive or negative phototaxis. Finally, we show that a school of microswimmers mimics the collective phototactic behaviour of green algae in solution. A Janus photocatalytic structure can orient and move either towards or away from an external light source, mimicking the behaviour of phototactic microorganisms.
Remote activation of biomolecules in deep tissues using near-infrared-to-UV upconversion nanotransducers
Controlled activation or release of biomolecules is very crucial in various biological applications. Controlling the activity of biomolecules have been attempted by various means and controlling the activity by light has gained popularity in the past decade. The major hurdle in this process is that photoactivable compounds mostly respond to UV radiation and not to visible or near-infrared (NIR) light. The use of UV irradiation is limited by its toxicity and very low tissue penetration power. In this study, we report the exploitation of the potential of NIR-to-UV upconversion nanoparticles (UCNs), which act as nanotransducers to absorb NIR light having high tissue penetration power and negligible phototoxicity and emit UV light locally, for photoactivation of caged compounds and, in particular, used for photo-controlled gene expression. Both activation and knockdown of GFP was performed in both solution and cells, and patterned activation of GFP was achieved successfully by using upconverted UV light produced by NIR-to-UV UCNs. In-depth photoactivation through tissue phantoms and in vivo activation of caged nucleic acids were also accomplished. The success of this methodology has defined a unique level in the field of photo-controlled activation and delivery of molecules.
Applying plasmonics to a sustainable future
Plasmonic technologies may form components of a future clean and sustainable society Chemistry is fundamental for powering our society. A flurry of very promising experiments demonstrate that plasmonics may have a transformative impact on the way we will drive, manipulate, enhance, and monitor chemical processes in the future. Plasmonics offers the ultimate spatial and temporal control over light and photochemistry, with the help of metallic nanostructures capable of concentrating electromagnetic energy into nanoscale volumes. Surface plasmons (SPs) are charge-density oscillations at the surface of a conducting material and decay by reemission of a photon or through the creation of highly energetic (“hot”) electrons and holes. The subsequent equilibration of hot carriers with lattice phonons can lead to appreciable local heating.
Above-bandgap voltages from ferroelectric photovoltaic devices
In conventional solid-state photovoltaics, electron–hole pairs are created by light absorption in a semiconductor and separated by the electric field spaning a micrometre-thick depletion region. The maximum voltage these devices can produce is equal to the semiconductor electronic bandgap. Here, we report the discovery of a fundamentally different mechanism for photovoltaic charge separation, which operates over a distance of 1–2 nm and produces voltages that are significantly higher than the bandgap. The separation happens at previously unobserved nanoscale steps of the electrostatic potential that naturally occur at ferroelectric domain walls in the complex oxide BiFeO 3 . Electric-field control over domain structure allows the photovoltaic effect to be reversed in polarity or turned off. This new degree of control, and the high voltages produced, may find application in optoelectronic devices. Steps in the electrostatic potential at domain walls in a ferroelectric material give rise to a new kind of photovoltaic effect that produces voltages significantly higher than the bandgap of the material.
Excitons in nanoscale systems
Nanoscale systems are forecast to be a means of integrating desirable attributes of molecular and bulk regimes into easily processed materials. Notable examples include plastic light-emitting devices and organic solar cells, the operation of which hinge on the formation of electronic excited states, excitons, in complex nanostructured materials. The spectroscopy of nanoscale materials reveals details of their collective excited states, characterized by atoms or molecules working together to capture and redistribute excitation. What is special about excitons in nanometre-sized materials? Here we present a cross-disciplinary review of the essential characteristics of excitons in nanoscience. Topics covered include confinement effects, localization versus delocalization, exciton binding energy, exchange interactions and exciton fine structure, exciton–vibration coupling and dynamics of excitons. Important examples are presented in a commentary that overviews the present understanding of excitons in quantum dots, conjugated polymers, carbon nanotubes and photosynthetic light-harvesting antenna complexes.
Designing Microflowreactors for Photocatalysis Using Sonochemistry: A Systematic Review Article
Use of sonication for designing and fabricating reactors, especially the deposition of catalysts inside a microreactor, is a modern approach. There are many reports that prove that a microreactor is a better setup compared with batch reactors for carrying out catalytic reactions. Microreactors have better energy efficiency, reaction rate, safety, a much finer degree of process control, better molecular diffusion, and heat-transfer properties compared with the conventional batch reactor. The use of microreactors for photocatalytic reactions is also being considered to be the appropriate reactor configuration because of its improved irradiation profile, better light penetration through the entire reactor depth, and higher spatial illumination homogeneity. Ultrasound has been used efficiently for the synthesis of materials, degradation of organic compounds, and fuel production, among other applications. The recent increase in energy demands, as well as the stringent environmental stress due to pollution, have resulted in the need to develop green chemistry-based processes to generate and remove contaminants in a more environmentally friendly and cost-effective manner. It is possible to carry out the synthesis and deposition of catalysts inside the reactor using the ultrasound-promoted method in the microfluidic system. In addition, the synergistic effect generated by photocatalysis and sonochemistry in a microreactor can be used for the production of different chemicals, which have high value in the pharmaceutical and chemical industries. The current review highlights the use of both photocatalysis and sonochemistry for developing microreactors and their applications.
Two- and three-dimensional folding of thin film single-crystalline silicon for photovoltaic power applications
Fabrication of 3D electronic structures in the micrometer-to-millimeter range is extremely challenging due to the inherently 2D nature of most conventional wafer-based fabrication methods. Self-assembly, and the related method of self-folding of planar patterned membranes, provide a promising means to solve this problem. Here, we investigate self-assembly processes driven by wetting interactions to shape the contour of a functional, nonplanar photovoltaic (PV) device. A mechanics model based on the theory of thin plates is developed to identify the critical conditions for self-folding of different 2D geometrical shapes. This strategy is demonstrated for specifically designed millimeter-scale silicon objects, which are self-assembled into spherical, and other 3D shapes and integrated into fully functional light-trapping PV devices. The resulting 3D devices offer a promising way to efficiently harvest solar energy in thin cells using concentrator microarrays that function without active light tracking systems.
Reproducible on–off switching of solid-state luminescence by controlling molecular packing through heat-mode interconversion
Organic luminescent solids are attracting increasing interest in various fields of application 1 , 2 , 3 . Modification or alteration of the chemical structures of their component molecules is the most common approach for tuning their luminescence properties. However, for dynamic tuning or switching of solid-state luminescence with high efficiency and reproducibility successful examples are limited 2 , 4 as chemical reactions in the solid state frequently encounter insufficient conversion, one-way reactions or loss of their luminescence properties. One promising approach is to control the luminescence properties by altering the mode of solid-state molecular packing without chemical reactions. Here, we show that 2,2′:6′,2′′-terpyridine 5 , practically non-luminescent in the form of amorphous solid or needle crystal 6 , shows strong blue luminescence upon formation of a plate crystal. Efficient and reproducible on–off switching of solid-state luminescence is demonstrated by heat-mode interconversion between the plate and needle crystals. Because alteration of the mode of molecular packing does not require chemical reactions, the present findings would open the way for the development of novel organic luminescent solids that can be switched on and off by external thermal stimuli.
Accelerated gas-liquid visible light photoredox catalysis with continuous-flow photochemical microreactors
In this protocol, the construction and use of an operationally simple photochemical microreactor for visible light gas-liquid photoredox catalysis is described. The procedure includes details on how to set up and use the microreactor. In this protocol, we describe the construction and use of an operationally simple photochemical microreactor for gas-liquid photoredox catalysis using visible light. The general procedure includes details on how to set up the microreactor appropriately with inlets for gaseous reagents and organic starting materials, and it includes examples of how to use it to achieve continuous-flow preparation of disulfides or trifluoromethylated heterocycles and thiols. The reported photomicroreactors are modular, inexpensive and can be prepared rapidly from commercially available parts within 1 h even by nonspecialists. Interestingly, typical reaction times of gas-liquid visible light photocatalytic reactions performed in microflow are lower (in the minute range) than comparable reactions performed as a batch process (in the hour range). This can be attributed to the improved irradiation efficiency of the reaction mixture and the enhanced gas-liquid mass transfer in the segmented gas-liquid flow regime.