Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
171 result(s) for "Pit1 protein"
Sort by:
Overview of the 2022 WHO Classification of Pituitary Tumors
This review summarizes the changes in the 5th Edition of the WHO Classification of Endocrine and Neuroendocrine Tumors that relate to the pituitary gland. The new classification clearly distinguishes anterior lobe (adenohypophyseal) from posterior lobe (neurohypophyseal) and hypothalamic tumors. Other tumors arising in the sellar region are also discussed. Anterior lobe tumors include (i) well-differentiated adenohypophyseal tumors that are now classified as pituitary neuroendocrine tumors (PitNETs; formerly known as pituitary adenomas), (ii) pituitary blastoma, and (iii) the two types of craniopharyngioma. The new WHO classification provides detailed histological subtyping of a PitNET based on the tumor cell lineage, cell type, and related characteristics. The routine use of immunohistochemistry for pituitary transcription factors (PIT1, TPIT, SF1, GATA3, and ERα) is endorsed in this classification. The major PIT1, TPIT, and SF1 lineage-defined PitNET types and subtypes feature distinct morphologic, molecular, and clinical differences. The “null cell” tumor, which is a diagnosis of exclusion, is reserved for PitNETs with no evidence of adenohypophyseal lineage differentiation. Unlike the 2017 WHO classification, mammosomatotroph and acidophil stem cell tumors represent distinct PIT1-lineage PitNETs. The diagnostic category of PIT1-positive plurihormonal tumor that was introduced in the 2017 WHO classification is replaced by two clinicopathologically distinct PitNETs: the immature PIT1-lineage tumor (formerly known as silent subtype 3 tumor) and the mature plurihormonal PIT1-lineage tumor. Rare unusual plurihormonal tumors feature multi-lineage differentiation. The importance of recognizing multiple synchronous PitNETs is emphasized to avoid misclassification. The term “metastatic PitNET” is advocated to replace the previous terminology “pituitary carcinoma” in order to avoid confusion with neuroendocrine carcinoma (a poorly differentiated epithelial neuroendocrine neoplasm). Subtypes of PitNETs that are associated with a high risk of adverse biology are emphasized within their cell lineage and cell type as well as based on clinical variables. Posterior lobe tumors, the family of pituicyte tumors, include the traditional pituicytoma, the oncocytic form (spindle cell oncocytoma), the granular cell form (granular cell tumor), and the ependymal type (sellar ependymoma). Although these historical terms are entrenched in the literature, they are nonspecific and confusing, such that oncocytic pituicytoma, granular cell pituicytoma, and ependymal pituicytoma are now proposed as more accurate. Tumors with hypothalamic neuronal differentiation are classified as gangliocytomas or neurocytomas based on large and small cell size, respectively. This classification sets the standard for a high degree of sophistication to allow individualized patient management approaches.
Pituitary neuroendocrine tumors with PIT1/SF1 co-expression show distinct clinicopathological and molecular features
Pituitary neuroendocrine tumors (PitNETs) are classified according to cell lineage, which requires immunohistochemistry for adenohypophyseal hormones and the transcription factors (TFs) PIT1, SF1, and TPIT. According to the current WHO 2022 classification, PitNETs with co-expression of multiple TFs are termed “plurihormonal”. Previously, PIT1/SF1 co-expression was prevailingly reported in PitNETs, which otherwise correspond to the somatotroph lineage. However, little is known about such tumors and the WHO classification has not recognized their significance. We compiled an in-house case series of 100 tumors, previously diagnosed as somatotroph PitNETs. Following TF staining, histopathological features associated with PIT1/SF1 co-expression were assessed. Integration of in-house and publicly available sample data allowed for a meta-analysis of SF1-associated clinicopathological and molecular features across a total of 270 somatotroph PitNETs. The majority (74%, 52/70) of our densely granulated somatotroph PitNETs (DGST) unequivocally co-expressed PIT1 and SF1 (DGST-PIT1/SF1). None (0%, 0/30) of our sparsely granulated somatotroph PitNETs (SGST) stained positive for SF1 (SGST-PIT1). Among DGST, PIT1/SF1 co-expression was significantly associated with scarce FSH/LH expression and fewer fibrous bodies compared to DGST-PIT1. Integrated molecular analyses including publicly available samples confirmed that DGST-PIT1/SF1, DGST-PIT1 and SGST-PIT1 represent distinct tumor subtypes. Clinicopathological meta-analyses indicated that DGST-PIT1 respond more favorably towards treatment with somatostatin analogs compared to DGST-PIT1/SF1, while both these subtypes show an overall less aggressive clinical course than SGST-PIT1. In this study, we spotlight that DGST with co-expression of PIT1 and SF1 represent a common, yet underrecognized, distinct PitNET subtype. Our study questions the rationale of generally classifying such tumors as “plurihormonal”, and calls for a refinement of the WHO classification. We propose the term “somatogonadotroph PitNET”.
Clinical and Pathological Aspects of Silent Pituitary Adenomas
Abstract Context Silent pituitary adenomas are anterior pituitary tumors with hormone synthesis but without signs or symptoms of hormone hypersecretion. They have been increasingly recognized and represent challenging diagnostic issues. Evidence Acquisition A comprehensive literature search was performed using MEDLINE and EMBASE databases from January 2000 to March 2018 with the following key words: (i) pituitary adenoma/tumor and nonfunctioning; or (ii) pituitary adenoma/tumor and silent. All titles and abstracts of the retrieved articles were reviewed, and recent advances in the field of silent pituitary adenomas were summarized. Evidence Synthesis The clinical and biochemical picture of pituitary adenomas reflects a continuum between functional and silent adenomas. Although some adenomas are truly silent, others will show some evidence of biochemical hypersecretion or could have subtle clinical signs and, therefore, can be referred to as clinically silent or “whispering” adenomas. Silent tumors seem to be more aggressive than their secreting counterparts, with a greater recurrence rate. Transcription factors for pituitary cell lineages have been introduced into the 2017 World Health Organization guidelines: steroidogenic factor 1 staining for gonadotroph lineage; PIT1 (pituitary-specific positive transcription factor 1) for growth hormone, prolactin, and TSH lineage, and TPIT for the corticotroph lineage. Prospective studies applying these criteria will establish the value of the new classification. Conclusions A concise review of the clinical and pathological aspects of silent pituitary adenomas was conducted in view of the new World Health Organization classification of pituitary adenomas. New classifications, novel prognostics markers, and emerging imaging and therapeutic approaches need to be evaluated to better serve this unique group of patients. We present a concise review of the clinical and pathological aspects of silent pituitary adenomas in view of the new World Health Organization classification of pituitary adenomas.
How to Classify Pituitary Neuroendocrine Tumors (PitNET)s in 2020
Adenohypophyseal tumors, which were recently renamed pituitary neuroendocrine tumors (PitNET), are mostly benign, but may present various behaviors: invasive, “aggressive” and malignant with metastases. They are classified into seven morphofunctional types and three lineages: lactotroph, somatotroph and thyrotroph (PIT1 lineage), corticotroph (TPIT lineage) or gonadotroph (SF1 lineage), null cell or immunonegative tumor and plurihormonal tumors. The WHO 2017 classification suggested that subtypes, such as male lactotroph, silent corticotroph and Crooke cell, sparsely granulated somatotroph, and silent plurihormonal PIT1 positive tumors, should be considered as “high risk” tumors. However, the prognostic impact of these subtypes and of each morphologic type remains controversial. In contrast, the French five-tiered classification, taking into account the invasion, the immuno-histochemical (IHC) type, and the proliferative markers (Ki-67 index, mitotic count, p53 positivity), has a prognostic value validated by statistical analysis in 4 independent cohorts. A standardized report for the diagnosis of pituitary tumors, integrating all these parameters, has been proposed by the European Pituitary Pathology Group (EPPG). In 2020, the pituitary pathologist must be considered as a member of the multidisciplinary pituitary team. The pathological diagnosis may help the clinician to adapt the post-operative management, including appropriate follow-up and early recognition and treatment of potentially aggressive forms.
Overview of the 2017 WHO Classification of Pituitary Tumors
This review focuses on discussing the main changes on the upcoming fourth edition of the WHO Classification of Tumors of the Pituitary Gland emphasizing histopathological and molecular genetics aspects of pituitary neuroendocrine (i.e., pituitary adenomas) and some of the non-neuroendocrine tumors involving the pituitary gland. Instead of a formal review, we introduced the highlights of the new WHO classification by answering select questions relevant to practising pathologists. The revised classification of pituitary adenomas, in addition to hormone immunohistochemistry, recognizes the role of other immunohistochemical markers including but not limited to pituitary transcription factors. Recognizing this novel approach, the fourth edition of the WHO classification has abandoned the concept of “a hormone-producing pituitary adenoma” and adopted a pituitary adenohypophyseal cell lineage designation of the adenomas with subsequent categorization of histological variants according to hormone content and specific histological and immunohistochemical features. This new classification does not require a routine ultrastructural examination of these tumors. The new definition of the Null cell adenoma requires the demonstration of immunonegativity for pituitary transcription factors and adenohypophyseal hormones Moreover, the term of atypical pituitary adenoma is no longer recommended. In addition to the accurate tumor subtyping, assessment of the tumor proliferative potential by mitotic count and Ki-67 index, and other clinical parameters such as tumor invasion, is strongly recommended in individual cases for consideration of clinically aggressive adenomas. This classification also recognizes some subtypes of pituitary neuroendocrine tumors as “high-risk pituitary adenomas” due to the clinical aggressive behavior; these include the sparsely granulated somatotroph adenoma, the lactotroph adenoma in men, the Crooke’s cell adenoma, the silent corticotroph adenoma, and the newly introduced plurihormonal Pit-1-positive adenoma (previously known as silent subtype III pituitary adenoma). An additional novel aspect of the new WHO classification was also the definition of the spectrum of thyroid transcription factor-1 expressing pituitary tumors of the posterior lobe as representing a morphological spectrum of a single nosological entity. These tumors include the pituicytoma, the spindle cell oncocytoma, the granular cell tumor of the neurohypophysis, and the sellar ependymoma.
Integrated proteogenomic characterization across major histological types of pituitary neuroendocrine tumors
Pituitary neuroendocrine tumor (PitNET) is one of the most common intracranial tumors. Due to its extensive tumor heterogeneity and the lack of high-quality tissues for biomarker discovery, the causative molecular mechanisms are far from being fully defined. Therefore, more studies are needed to improve the current clinicopathological classification system, and advanced treatment strategies such as targeted therapy and immunotherapy are yet to be explored. Here, we performed the largest integrative genomics, transcriptomics, proteomics, and phosphoproteomics analysis reported to date for a cohort of 200 PitNET patients. Genomics data indicate that GNAS copy number gain can serve as a reliable diagnostic marker for hyperproliferation of the PIT1 lineage. Proteomics-based classification of PitNETs identified 7 clusters, among which, tumors overexpressing epithelial-mesenchymal transition (EMT) markers clustered into a more invasive subgroup. Further analysis identified potential therapeutic targets, including CDK6, TWIST1, EGFR, and VEGFR2, for different clusters. Immune subtyping to explore the potential for application of immunotherapy in PitNET identified an association between alterations in the JAK1-STAT1-PDL1 axis and immune exhaustion, and between changes in the JAK3-STAT6-FOS/JUN axis and immune infiltration. These identified molecular markers and alternations in various clusters/subtypes were further confirmed in an independent cohort of 750 PitNET patients. This proteogenomic analysis across traditional histological boundaries improves our current understanding of PitNET pathophysiology and suggests novel therapeutic targets and strategies.
Tumor immune microenvironment in pituitary neuroendocrine tumors (PitNETs): increased M2 macrophage infiltration and PD-L1 expression in PIT1-lineage subset
Purpose Tumor immune microenvironment in pituitary neuroendocrine tumors (PitNETs) and application of current immunotherapy for refractory PitNETs remains debated. We aim to evaluate the immune landscape in different lineages of PitNETs and determine the potential role of pituitary transcription factors in reshaping the tumor immune microenvironment (TIME), thus promoting the application of current immunotherapy for aggressive and metastatic PitNETs. Methods Immunocyte infiltration and expression patterns of immune checkpoint molecules in different lineages of PitNETs were estimated via in silico analysis and validated using an IHC validation cohort. The correlation between varying immune components with clinicopathological features was assessed in PIT1-lineage PitNETs. Results Transcriptome profiles from 210 PitNETs/ 8 normal pituitaries (NPs) and immunohistochemical validations of 77 PitNETs/6 NPs revealed a significant increase in M2-macrophage infiltration in PIT1-lineage PitNETs, compared with the TPIT-lineage, SF1-lineage subsets and NPs. While CD68 + macrophage, CD4 + T cells, and CD8 + T cells were not different among them. Increased M2-macrophage infiltration was associated with tumor volume (p < 0.0001, r = 0.57) in PIT1-lineage PitNETs. Meanwhile, differentially expressed immune checkpoint molecules (PD-L1, PD1, and CTLA-4) were screened and validated in IHC cohorts. The results showed that PD-L1 was highly expressed in PIT1-lineage subsets, and PD-L1 overexpression showed a positive correlation with tumor volume (p = 0.04, r = 0.29) and cavernous sinus invasion (p < 0.0001) in PIT1-lineage PitNETs. Conclusion PIT1-lineage PitNETs exhibit a distinct immune profile with enrichment of M2 macrophage infiltration and PD-L1 expression, which may contribute to its clinical aggressiveness. Application of current immune checkpoint inhibitors and M2-targeted immunotherapy might be more beneficial to treat aggressive and metastatic PIT-lineage PitNETs.
Multilineage Pituitary Neuroendocrine Tumors (PitNETs) Expressing PIT1 and SF1
PitNETs are usually restricted in their cytodifferentiation to only one of 3 lineages dictated by expression of the pituitary transcription factors (TFs) PIT1, TPIT, or SF1. Tumors that show lineage infidelity and express multiple TFs are rare. We searched the pathology files of 4 institutions for PitNETs with coexpression of PIT1 and SF1. We identified 38 tumors in 21 women and 17 men, average age 53 (range 21–79) years. They represented 1.3 to 2.5% of PitNETs at each center. Acromegaly was the presentation in 26 patients; 2 had central hyperthyroidism associated with growth hormone (GH) excess and one had significantly elevated prolactin (PRL). The remainder had mass lesions with visual deficits, hypopituitarism, and/or headaches. Tumor size ranged from 0.9 to 5 cm; all 7 lesions smaller than 1 cm were associated with acromegaly. Larger lesions frequently invaded the cavernous sinuses. Four cases represented a second attempt at surgical resection. PIT1 was usually diffusely positive but 5 cases had variable (patchy or focal) staining. SF1 reactivity was variable in intensity but diffuse in all but 2 cases. GATA3 data, available in 14 cases, identified diffuse positivity in 5 and focal staining in 1. GH was expressed in all but 5 tumors, PRL and thyrotropin (TSH) were expressed in 14 and 13, respectively, follicle-stimulating hormone (FSH) in 11 of 18, and luteinizing hormone (LH) in 4 of 17. Keratin staining patterns were diffuse perinuclear/membranous in 27, variable perinuclear in 4, and negative in 3; scattered fibrous bodies were seen in 5 and diffuse fibrous bodies in 1. Ki67 labeling index ranged from < 1 to 7.9%. In 3 cases, these tumors represented one of multiple synchronous PitNETs; a separate corticotroph tumor was seen in 2 patients and one patient had 2 additional discrete lesions, a sparsely granulated lactotroph, and a pure gonadotroph tumor comprising a triple tumor. PitNETs expressing PIT1 and SF1 represent multilineage PitNETs. These rare tumors have variable clinical and morphological features, most often presenting as large tumors with GH excess and occasionally as one of multiple synchronous PitNETs of distinct lineages.
Autoimmune Pituitary Disease: New Concepts With Clinical Implications
Abstract Some endocrine disorders, including hypophysitis and isolated adrenocorticotropic hormone (ACTH) deficiency, are caused by an autoimmune response to endocrine organs. Although the pathogenesis of some autoimmune endocrine diseases has been elucidated, it remains obscure for most. Anti-PIT-1 hypophysitis (anti-PIT-1 antibody syndrome) is a newly described pituitary autoimmune disease characterized by acquired and specific growth hormone (GH), prolactin (PRL), and thyroid-stimulating hormone (TSH) deficiencies. This disorder is associated with a thymoma or neoplasm that ectopically expresses pituitary-specific transcription factor 1 (PIT-1) protein. Circulating anti-PIT-1 antibody is a disease marker, and PIT-1-reactive cytotoxic T cells (CTLs) play a pivotal role in disease development. In addition, isolated ACTH deficiency appears to be caused by autoimmunity to corticotrophs; however, the pathogenesis remains unclear. A recently described case of isolated ACTH deficiency with large cell neuroendocrine carcinoma (LCNEC) showed ectopically expressed proopiomelanocortin (POMC), and circulating anti-POMC antibody and POMC-reactive CTLs were also detected. As CTL infiltrations around corticotrophs were also observed, isolated ACTH deficiency may be associated at least in part with a paraneoplastic syndrome. Although several underlying mechanisms for pituitary autoimmunity have been proposed, these observations highlight the importance of paraneoplastic syndrome as a cause of pituitary autoimmune disease. In this review, we focus on the pathophysiology and connection of anti-PIT-1 hypophysitis and isolated ACTH deficiency and discuss the state-of-art knowledge for understanding pituitary autoimmunity. Graphical Abstract Graphical Abstract
Single-cell sequencing of PIT1-positive pituitary adenoma highlights the pro-tumour microenvironment mediated by IFN-γ-induced tumour-associated fibroblasts remodelling
BackgroundPIT1-positive pituitary adenoma (PIT1-PA) is one of the most important lineages of pituitary adenoma (PA), which causes systematic endocrine disorders and a worse prognosis. Tumour-associated fibroblast (TAF) is a crucial stroma cell type in the tumour microenvironment (TME). However, cellular and functional heterogeneity of TAF and immune cells in PIT1-PA have not been fully investigated.MethodsBy single-cell RNA sequencing of four PIT1-PAs and further analyses, we characterised the molecular and functional profiles of 28 different cell subtypes.ResultsPA stem cells in PIT1/SF1-positve PA were in a hybrid epithelial/mesenchymal state, and differentiated along the PIT1- and SF- dependent branches. C1Q was overwhelmingly expressed in tumour-associated macrophages, indicating its pro-tumoral functionality. PIT1-PA progression was characterised by lower cell–cell communication strength and higher cell adhesion-associated signals, indicating the immunosuppressive but pro-invasive microenvironment. IFN-γ signal repressed functional remodelling of myofibroblastic TAF (mTAF) towards inflammatory TAF/antigen-presenting TAF. IFN-γ inhibited mTAF phenotypes and N-cadherin expression through STAT3 signal axis. CDH2 knockdown in TAFs abrogated their pro-tumour function in PAs.ConclusionsOur study builds up a cellular landscape of PIT1-PA TME and highlights anti-tumour function of IFN-γ mediated TAF remodelling, which benefits clinical treatments and drug development.