MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Tumor immune microenvironment in pituitary neuroendocrine tumors (PitNETs): increased M2 macrophage infiltration and PD-L1 expression in PIT1-lineage subset
Tumor immune microenvironment in pituitary neuroendocrine tumors (PitNETs): increased M2 macrophage infiltration and PD-L1 expression in PIT1-lineage subset
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Tumor immune microenvironment in pituitary neuroendocrine tumors (PitNETs): increased M2 macrophage infiltration and PD-L1 expression in PIT1-lineage subset
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Tumor immune microenvironment in pituitary neuroendocrine tumors (PitNETs): increased M2 macrophage infiltration and PD-L1 expression in PIT1-lineage subset
Tumor immune microenvironment in pituitary neuroendocrine tumors (PitNETs): increased M2 macrophage infiltration and PD-L1 expression in PIT1-lineage subset

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Tumor immune microenvironment in pituitary neuroendocrine tumors (PitNETs): increased M2 macrophage infiltration and PD-L1 expression in PIT1-lineage subset
Tumor immune microenvironment in pituitary neuroendocrine tumors (PitNETs): increased M2 macrophage infiltration and PD-L1 expression in PIT1-lineage subset
Journal Article

Tumor immune microenvironment in pituitary neuroendocrine tumors (PitNETs): increased M2 macrophage infiltration and PD-L1 expression in PIT1-lineage subset

2023
Request Book From Autostore and Choose the Collection Method
Overview
Purpose Tumor immune microenvironment in pituitary neuroendocrine tumors (PitNETs) and application of current immunotherapy for refractory PitNETs remains debated. We aim to evaluate the immune landscape in different lineages of PitNETs and determine the potential role of pituitary transcription factors in reshaping the tumor immune microenvironment (TIME), thus promoting the application of current immunotherapy for aggressive and metastatic PitNETs. Methods Immunocyte infiltration and expression patterns of immune checkpoint molecules in different lineages of PitNETs were estimated via in silico analysis and validated using an IHC validation cohort. The correlation between varying immune components with clinicopathological features was assessed in PIT1-lineage PitNETs. Results Transcriptome profiles from 210 PitNETs/ 8 normal pituitaries (NPs) and immunohistochemical validations of 77 PitNETs/6 NPs revealed a significant increase in M2-macrophage infiltration in PIT1-lineage PitNETs, compared with the TPIT-lineage, SF1-lineage subsets and NPs. While CD68 + macrophage, CD4 + T cells, and CD8 + T cells were not different among them. Increased M2-macrophage infiltration was associated with tumor volume (p < 0.0001, r = 0.57) in PIT1-lineage PitNETs. Meanwhile, differentially expressed immune checkpoint molecules (PD-L1, PD1, and CTLA-4) were screened and validated in IHC cohorts. The results showed that PD-L1 was highly expressed in PIT1-lineage subsets, and PD-L1 overexpression showed a positive correlation with tumor volume (p = 0.04, r = 0.29) and cavernous sinus invasion (p < 0.0001) in PIT1-lineage PitNETs. Conclusion PIT1-lineage PitNETs exhibit a distinct immune profile with enrichment of M2 macrophage infiltration and PD-L1 expression, which may contribute to its clinical aggressiveness. Application of current immune checkpoint inhibitors and M2-targeted immunotherapy might be more beneficial to treat aggressive and metastatic PIT-lineage PitNETs.

MBRLCatalogueRelatedBooks