Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
751 result(s) for "Placenta - virology"
Sort by:
Severe SARS-CoV-2 placenta infection can impact neonatal outcome in the absence of vertical transmission
The effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on the pathophysiology of the placenta and its impact on pregnancy outcome has not yet been fully elucidated. Here, we present a comprehensive clinical, morphological, and molecular analysis of placental tissues from pregnant women with and without SARS-CoV-2 infection. SARS-CoV-2 could be detected in half of placental tissues from SARS-CoV-2-positive women. The presence of the virus was not associated with any distinctive pathological, maternal, or neonatal outcome features. SARS-CoV-2 tissue load was low in all but one patient who exhibited severe placental damage leading to neonatal neurological manifestations. The placental transcriptional response induced by high viral load of SARS-CoV-2 showed an immunopathology phenotype similar to autopsy lung tissues from patients with severe coronavirus disease 2019. This finding contrasted with the lack of inflammatory response in placental tissues from SARS-CoV-2-positive women with low viral tissue load and from SARS-CoV-2-negative women. Importantly, no evidence of vertical transmission of SARS-CoV-2 was found in any newborns, suggesting that the placenta may be an effective maternal-neonatal barrier against the virus even in the presence of severe infection. Our observations suggest that severe placental damage induced by the virus may be detrimental for the neonate independently of vertical transmission.
SARS-CoV-2 Placentitis: A Review of Pathologic Findings and Discussion of Differential Diagnosis
Maternal SARS-CoV-2 infection has been associated with increased adverse events in the mother, as well as increased stillbirths (11.5 per 1000), spontaneous abortions, and premature delivery. Clinical symptomatology, or the lack thereof, does not appear to be directly related to fetal or neonatal complications. SARS-CoV-2 placentitis is now recognized as the culprit, and the presence of the virus in the syncytiotrophoblasts of the placenta has emerged as a significant predictor of fetal compromise. To provide a review of the clinical presentation and outcomes, morphologic characteristics, detection methods, and differential diagnosis of SARS-CoV-2 placentitis. A case of placental pathology in a patient with COVID-19 infection at the University of Michigan, as well as a review of the available literature through a search of PubMed and Google Scholar. SARS-CoV-2 placentitis is a well-documented outcome of symptomatic and asymptomatic COVID-19 infection during pregnancy. It can disrupt placental function and lead to severe outcomes in the neonate, including growth restriction and stillbirths. Chronic histiocytic intervillositis, perivillous fibrin deposition, and trophoblast necrosis, when present together, may act as a morphologic signature of SARS-CoV-2 placentitis. The histologic differential diagnosis includes massive perivillous fibrin deposition (MPFD)/maternal floor infarction (MFI), chronic villitis of unknown origin, or other infectious villitides. Immunohistochemistry and RNA in situ hybridization are specific to the viral antibodies and RNA, respectively, and are essential for classification.
Intrauterine Fetal Demise After Uncomplicated COVID-19: What Can We Learn from the Case?
Background: SARS-CoV-2 infection in pregnant women can lead to placental damage and transplacental infection transfer, and intrauterine fetal demise is an unpredictable event. Case study: A 32-year-old patient in her 38th week of pregnancy reported loss of fetal movements. She overcame mild COVID-19 with positive PCR test 22 days before. A histology of the placenta showed deposition of intervillous fibrinoid, lympho-histiocytic infiltration, scant neutrophils, clumping of villi, and extant infarctions. Immunohistochemistry identified focal SARS-CoV-2 nucleocapsid and spike protein in the syncytiotrophoblast and isolated in situ hybridization of the virus’ RNA. Low ACE2 and TMPRSS2 contrasted with strong basigin/CD147 and PDL-1 positivity in the trophoblast. An autopsy of the fetus showed no morphological abnormalities except for lung interstitial infiltrate, with prevalent CD8-positive T-lymphocytes and B-lymphocytes. Immunohistochemistry and in situ hybridization proved the presence of countless dispersed SARS-CoV-2-infected epithelial and endothelial cells in the lung tissue. The potential virus-receptor protein ACE2, TMPRSS2, and CD147 expression was too low to be detected. Conclusion: Over three weeks’ persistence of trophoblast viral infection lead to extensive intervillous fibrinoid depositions and placental infarctions. High CD147 expression might serve as the dominant receptor for the virus, and PDL-1 could limit maternal immunity in placental tissue virus clearance. The presented case indicates that the SARS-CoV-2 infection-induced changes in the placenta lead to ischemia and consecutive demise of the fetus. The infection of the fetus was without significant impact on its death. This rare complication of pregnancy can appear independently to the severity of COVID-19’s clinical course in the pregnant mother.
Placental Pathology in COVID-19
Abstract Objectives To describe histopathologic findings in the placentas of women with coronavirus disease 2019 (COVID-19) during pregnancy. Methods Pregnant women with COVID-19 delivering between March 18, 2020, and May 5, 2020, were identified. Placentas were examined and compared to historical controls and women with placental evaluation for a history of melanoma. Results Sixteen placentas from patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were examined (15 with live birth in the third trimester, 1 delivered in the second trimester after intrauterine fetal demise). Compared to controls, third trimester placentas were significantly more likely to show at least one feature of maternal vascular malperfusion (MVM), particularly abnormal or injured maternal vessels, and intervillous thrombi. Rates of acute and chronic inflammation were not increased. The placenta from the patient with intrauterine fetal demise showed villous edema and a retroplacental hematoma. Conclusions Relative to controls, COVID-19 placentas show increased prevalence of decidual arteriopathy and other features of MVM, a pattern of placental injury reflecting abnormalities in oxygenation within the intervillous space associated with adverse perinatal outcomes. Only 1 COVID-19 patient was hypertensive despite the association of MVM with hypertensive disorders and preeclampsia. These changes may reflect a systemic inflammatory or hypercoagulable state influencing placental physiology.
SARS-CoV-2 can infect the placenta and is not associated with specific placental histopathology: a series of 19 placentas from COVID-19-positive mothers
Congenital infection of SARS-CoV-2 appears to be exceptionally rare despite many cases of COVID-19 during pregnancy. Robust proof of placental infection requires demonstration of viral localization within placental tissue. Only two of the few cases of possible vertical transmission have demonstrated placental infection. None have shown placental expression of the ACE2 or TMPRSS2 protein, both required for viral infection. We examined 19 COVID-19 exposed placentas for histopathologic findings, and for expression of ACE2, and TMPRSS2 by immunohistochemistry. Direct placental SARS-CoV-2 expression was studied by two methods—nucleocapsid protein expression by immunohistochemistry, and RNA expression by in situ hybridization. ACE2 membranous expression in the syncytiotrophoblast (ST) of the chorionic villi is predominantly in a polarized pattern with expression highest on the stromal side of the ST. In addition, cytotrophoblast and extravillous trophoblast express ACE2. No ACE2 expression was detected in villous stroma, Hofbauer cells, or endothelial cells. TMPRSS2 expression was only present weakly in the villous endothelium and rarely in the ST. In 2 of 19 cases, SARS-CoV-2 RNA was present in the placenta focally in the ST and cytotrophoblast. There was no characteristic histopathology present in our cases including the two placental infections. We found that the placenta is capable of being infected but that this event is rare. We propose one explanation could be the polarized expression of ACE2 away from the maternal blood and pronounced paucity of TMPRSS2 expression in trophoblast.
Transplacental transmission of SARS-CoV-2 infection
SARS-CoV-2 outbreak is the first pandemic of the century. SARS-CoV-2 infection is transmitted through droplets; other transmission routes are hypothesized but not confirmed. So far, it is unclear whether and how SARS-CoV-2 can be transmitted from the mother to the fetus. We demonstrate the transplacental transmission of SARS-CoV-2 in a neonate born to a mother infected in the last trimester and presenting with neurological compromise. The transmission is confirmed by comprehensive virological and pathological investigations. In detail, SARS-CoV-2 causes: (1) maternal viremia, (2) placental infection demonstrated by immunohistochemistry and very high viral load; placental inflammation, as shown by histological examination and immunohistochemistry, and (3) neonatal viremia following placental infection. The neonate is studied clinically, through imaging, and followed up. The neonate presented with neurological manifestations, similar to those described in adult patients. Congenital infection of SARS-CoV-2 has been described, but the transmission routes remain unclear. Here, the authors report evidence of transplacental transmission of SARS-CoV-2 in a neonate born to a mother infected in the last trimester and presenting with neurological compromise.
The Brazilian Zika virus strain causes birth defects in experimental models
Brazilian Zika virus causes birth defects in mice Zika virus infection has been linked to an increase in the number of infants born with microcephaly in Brazil, but direct experimental proof that Zika virus causes birth defects was lacking. Here Alysson Muotri and colleagues show that the Brazilian Zika virus strain can cross the placenta and cause intrauterine growth restriction, including signs of microcephaly, in the SJL strain of mice. They also show that the virus can infect human brain organoids, inducing cell death by apoptosis and disrupting cortical layers. Zika virus (ZIKV) is an arbovirus belonging to the genus Flavivirus (family Flaviviridae ) and was first described in 1947 in Uganda following blood analyses of sentinel Rhesus monkeys 1 . Until the twentieth century, the African and Asian lineages of the virus did not cause meaningful infections in humans. However, in 2007, vectored by Aedes aegypti mosquitoes, ZIKV caused the first noteworthy epidemic on the Yap Island in Micronesia 2 . Patients experienced fever, skin rash, arthralgia and conjunctivitis 2 . From 2013 to 2015, the Asian lineage of the virus caused further massive outbreaks in New Caledonia and French Polynesia. In 2013, ZIKV reached Brazil, later spreading to other countries in South and Central America 3 . In Brazil, the virus has been linked to congenital malformations, including microcephaly and other severe neurological diseases, such as Guillain–Barré syndrome 4 , 5 . Despite clinical evidence, direct experimental proof showing that the Brazilian ZIKV (ZIKV BR ) strain causes birth defects remains absent 6 . Here we demonstrate that ZIKV BR infects fetuses, causing intrauterine growth restriction, including signs of microcephaly, in mice. Moreover, the virus infects human cortical progenitor cells, leading to an increase in cell death. We also report that the infection of human brain organoids results in a reduction of proliferative zones and disrupted cortical layers. These results indicate that ZIKV BR crosses the placenta and causes microcephaly by targeting cortical progenitor cells, inducing cell death by apoptosis and autophagy, and impairing neurodevelopment. Our data reinforce the growing body of evidence linking the ZIKV BR outbreak to the alarming number of cases of congenital brain malformations. Our model can be used to determine the efficiency of therapeutic approaches to counteracting the harmful impact of ZIKV BR in human neurodevelopment.
Placental Enlargement in Women with Primary Maternal Cytomegalovirus Infection Is Associated with Fetal and Neonatal Disease
Background. Serological testing for primary maternal cytomegalovirus (CMV) infection during pregnancy is not routine, but ultrasound studies are routine. Therefore, we evaluated placental thickening in women with primary CMV infection during pregnancy. Methods. The study included 92 women with primary CMV infection during pregnancy and 73 CMV-seropositive pregnant women without primary CMV infection. Neonatal CMV transmission was determined by CMV culture of urine samples. Thirty-two women were treated with CMV hyperimmune globulin to either prevent or treat intrauterine CMV infection. Maximal placental thickness was measured by longitudinal (nonoblique) scanning with the ultrasound beam perpendicular to the chorial dish. Programmed placental ultrasound evaluations were performed from 16 to 36 weeks of gestation. Results. At each measurement between 16 and 36 weeks of gestation, women with primary CMV infection who had a fetus or newborn with CMV disease had placentas that were significantly thicker than those of women with primary CMV infection who did not have a diseased fetus or newborn (P <.0001); the latter group, in turn, had placentas that were significantly thicker than those of seropositive control subjects (P <.0001). For both women with and women without diseased fetuses or newborns, receipt of hyperimmune globulin after primary CMV infection was associated with statistically significant reductions in placental thickness (P <.001). Placental vertical thickness values, which are predictive of primary maternal infection, were observed at each measurement from 16 to 36 weeks of gestation, and cutoff values ranged from 22 mm to 35 mm, with the best sensitivity and specificity at 28 and 32 weeks of gestation. Conclusions. Primary maternal CMV infection and fetal or neonatal disease are associated with sonographically thickened placentas, which respond to administration of hyperimmune globulin. These observations suggest that many of the manifestations of fetal and neonatal disease are caused by placental insufficiency.
Infections at the maternal–fetal interface: an overview of pathogenesis and defence
Infections are a major threat to human reproductive health, and infections in pregnancy can cause prematurity or stillbirth, or can be vertically transmitted to the fetus leading to congenital infection and severe disease. The acronym ‘TORCH’ (Toxoplasma gondii, other, rubella virus, cytomegalovirus, herpes simplex virus) refers to pathogens directly associated with the development of congenital disease and includes diverse bacteria, viruses and parasites. The placenta restricts vertical transmission during pregnancy and has evolved robust mechanisms of microbial defence. However, microorganisms that cause congenital disease have likely evolved diverse mechanisms to bypass these defences. In this Review, we discuss how TORCH pathogens access the intra-amniotic space and overcome the placental defences that protect against microbial vertical transmission.Infections during pregnancy can be associated with devastating outcomes for the pregnant mother and developing fetus. In this Review, Megli and Coyne discuss placental defences and provide an overview of how various viral, bacterial and parasitic pathogens traverse the maternal–fetal interface and cause disease.
SARS–CoV-2 infection of the placenta
BACKGROUNDThe effects of the novel coronavirus disease 2019 (COVID-19) in pregnancy remain relatively unknown. We present a case of second trimester pregnancy with symptomatic COVID-19 complicated by severe preeclampsia and placental abruption.METHODSWe analyzed the placenta for the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) through molecular and immunohistochemical assays and by and electron microscopy and measured the maternal antibody response in the blood to this infection.RESULTSSARS-CoV-2 localized predominantly to syncytiotrophoblast cells at the materno-fetal interface of the placenta. Histological examination of the placenta revealed a dense macrophage infiltrate, but no evidence for the vasculopathy typically associated with preeclampsia.CONCLUSIONThis case demonstrates SARS-CoV-2 invasion of the placenta, highlighting the potential for severe morbidity among pregnant women with COVID-19.FUNDINGBeatrice Kleinberg Neuwirth Fund and Fast Grant Emergent Ventures funding from the Mercatus Center at George Mason University. The funding bodies did not have roles in the design of the study or data collection, analysis, and interpretation and played no role in writing the manuscript.