Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
12,677
result(s) for
"Plant Structures - metabolism"
Sort by:
Phloem import and storage metabolism are highly coordinated by the low oxygen concentrations within developing wheat seeds
by
Dongen, J.T. van
,
Geigenberger, P
,
Froehlich, A
in
Amino acids
,
Biochemistry, biophysics & molecular biology
,
Biochimie, biophysique & biologie moléculaire
2004
We studied the influence of the internal oxygen concentration in seeds of wheat (Triticum aestivum) on storage metabolism and its relation to phloem import of nutrients. Wheat seeds that were developing at ambient oxygen (21%) were found to be hypoxic (2.1%). Altering the oxygen supply by decreasing or increasing the external oxygen concentration induced parallel changes in the internal oxygen tension. However, the decrease in internal concentration was proportionally less than the reduction in external oxygen. This indicates that decreasing the oxygen supply induces short-term adaptive responses to reduce oxygen consumption of the seeds. When external oxygen was decreased to 8%, internal oxygen decreased to approximately 0.5% leading to a decrease in energy production via respiration. Conversely, increasing the external oxygen concentration above ambient levels increased the oxygen content as well as the energy status of the seeds, indicating that under normal conditions the oxygen supply is strongly limiting for energy metabolism in developing wheat seeds. The intermediate metabolites of seed storage metabolism were not substantially affected when oxygen was either increased or decreased. However, at subambient external oxygen concentrations (8%) the metabolic flux of carbon into starch and protein, measured by injecting 14C-Suc into the seeds, was reduced by 17% and 32%, respectively, whereas no significant effect was observed at superambient (40%) oxygen. The observed decrease in biosynthetic fluxes to storage compounds is suggested to be part of an adaptive response to reduce energy consumption preventing excessive oxygen consumption when oxygen supply is limited. Phloem transport toward ears exposed to low (8%) oxygen was significantly reduced within 1 h, whereas exposing ears to elevated oxygen (40%) had no significant effect. This contrasts with the situation where the distribution of assimilates has been modified by removing the lower source leaves from the plant, resulting in less assimilates transported to the ear in favor of transport to the lower parts of the plant. Under these conditions, with two strongly competing sinks, elevated oxygen (40%) did lead to a strong increase in phloem transport to the ear. The results show that sink metabolism is affected by the prevailing low oxygen concentrations in developing wheat seeds, determining the import rate of assimilates via the phloem.
Journal Article
Combined NanoSIMS and synchrotron X-ray fluorescence reveal distinct cellular and subcellular distribution patterns of trace elements in rice tissues
2014
The cellular and subcellular distributions of trace elements can provide important clues to understanding how the elements are transported and stored in plant cells, but mapping their distributions is a challenging task.
The distributions of arsenic, iron, zinc, manganese and copper, as well as physiologically related macro-elements, were mapped in the node, internode and leaf sheath of rice (Oryza sativa) using synchrotron X-ray fluorescence (S-XRF) and high-resolution secondary ion mass spectrometry (NanoSIMS).
Although copper and silicon generally showed cell wall localization, arsenic, iron and zinc were strongly localized in the vacuoles of specific cell types. Arsenic was highly localized in the companion cell vacuoles of the phloem in all vascular bundles, showing a strong co-localization with sulfur, consistent with As(III)–thiol complexation. Within the node, zinc was localized in the vacuoles of the parenchyma cell bridge bordering the enlarged and diffuse vascular bundles, whereas iron and manganese were localized in the fundamental parenchyma cells, with iron being strongly co-localized with phosphorus in the vacuoles.
The highly heterogeneous and contrasting distribution patterns of these elements imply different transport activities and/or storage capacities among different cell types. Sequestration of arsenic in companion cell vacuoles may explain the limited phloem mobility of arsenite.
Journal Article
Global and cell-type gene expression profiles in tomato plants colonized by an arbuscular mycorrhizal fungus
by
Accotto, Gian Paolo
,
Miozzi, Laura
,
Catoni, Marco
in
abscisic acid
,
Abscisic Acid - metabolism
,
arbuscular mycorrhizal symbiosis
2009
Arbuscular mycorrhizal symbiosis develops in roots; extensive cellular reorganizations and specific metabolic changes occur, which are mirrored by local and systemic changes in the transcript profiles. A TOM2 microarray (c. 12 000 probes) has been used to obtain an overview of the transcriptional changes that are triggered in Solanum lycopersicum roots and shoots, as a result of colonization by the arbuscular mycorrhizal fungus Glomus mosseae. The cell-type expression profile of a subset of genes was monitored, using laser microdissection, to identify possible plant determinants of arbuscule development,. Microarrays revealed 362 up-regulated and 293 down-regulated genes in roots. Significant gene modulation was also observed in shoots: 85 up- and 337 down-regulated genes. The most responsive genes in both organs were ascribed to primary and secondary metabolism, defence and response to stimuli, cell organization and protein modification, and transcriptional regulation. Six genes, preferentially expressed in arbusculated cells, were identified. A comparative analysis only showed a limited overlap with transcript profiles identified in mycorrhizal roots of Medicago truncatula, probably as a consequence of the largely nonoverlapping probe sets on the microarray tools used. The results suggest that auxin and abscisic acid metabolism are involved in arbuscule formation and/or functioning.
Journal Article
Cleavage of Scarecrow-like mRNA Targets Directed by a Class of Arabidopsis miRNA
by
Llave, Cesar
,
Xie, Zhixin
,
Kasschau, Kristin D.
in
Arabidopsis
,
Arabidopsis - genetics
,
Arabidopsis - metabolism
2002
Micro-RNAs (miRNAs) are regulatory molecules that mediate effects by interacting with messenger RNA (mRNA) targets. Here we show that Arabidopsis thaliana miRNA 39 (also known as miR171), a 21-ribonucleotide species that accumulates predominantly in inflorescence tissues, is produced from an intergenic region in chromosome III and functionally interacts with mRNA targets encoding several members of the Scarecrow-like (SCL) family of putative transcription factors. miRNA 39 is complementary to an internal region of three SCL mRNAs. The interaction results in specific cleavage of target mRNA within the region of complementarity, indicating that this class of miRNA functions like small interfering RNA associated with RNA silencing to guide sequence-specific cleavage in a developmentally controlled manner.
Journal Article
Tracheophytes Contain Conserved Orthologs of a Basic Helix-Loop-Helix Transcription Factor That Modulate ROOT HAIR SPECIFIC Genes
by
Choi, Hee-Seung
,
Cho, Hyun-Min
,
Cho, Hyung-Taeg
in
Arabidopsis
,
Arabidopsis - genetics
,
Arabidopsis - metabolism
2017
ROOT HAIR SPECIFIC (RHS) genes, which contain the root hair-specific cis-element (RHE) in their regulatory regions, function in root hair morphogenesis. Here, we demonstrate that an Arabidopsis thaliana basic helix-loop-helix transcription factor, ROOT HAIR DEFECTVE SIX-LIKE4 (RSL4), directly binds to the RHE in vitro and in vivo, upregulates RHS genes, and stimulates root hair formation in Arabidopsis. Orthologs of RSL4 from a eudicot (poplar [Populus trichocarpa]), a monocot (rice [Oryza sativa]), and a lycophyte (Selaginella moellendorffii) each restored root hair growth in the Arabidopsis rsl4 mutant. In addition, the rice and S. moellendorffii RSL4 orthologs bound to the RHE in in vitro and in vivo assays. The RSL4 orthologous genes contain RHEs in their promoter regions, and RSL4 was able to bind to its own RHEs in vivo and amplify its own expression. This process likely provides a positive feedback loop for sustainable root hair growth. When RSL4 and its orthologs were expressed in cells in nonroot- hair positions, they induced ectopic root hair growth, indicating that these genes are sufficient to specify root hair formation. Our results suggest that RSL4 mediates root hair formation by regulating RHS genes and that this mechanism is conserved throughout the tracheophyte (vascular plant) lineage.
Journal Article
Stable isotope cellular imaging reveals that both live and degenerating fungal pelotons transfer carbon and nitrogen to orchid protocorms
by
Kuga, Yukari
,
Sakamoto, Naoya
,
Yurimoto, Hisayoshi
in
Amyloplasts
,
Basidiomycota
,
Basidiomycota - metabolism
2014
The objective of this study was to elucidate the transfer of nutrient elements in orchid symbiotic protocorms at the cellular level by imaging of stable isotope tracers. We address the long‐standing question of whether nutrients move by transport across the symbiotic interface or solely by lysis of fungal pelotons. [U‐¹³C]glucose and ¹⁵NH₄ ¹⁵NO₃ were added to Ceratobasidium sp. hyphae extending from symbiotic protocorms of Spiranthes sinensis. Isotope images were taken from resin‐embedded sections of protocorms using ultra‐high spatial resolution secondary ion mass spectrometry (SIMS). Analyses of regions of interest were conducted on isotope ratio images for fungal and host structures. Amyloplasts adjacent to young pelotons showed elevated ¹³C/¹²C, which indicated that fungal carbon (C) was transferred from live hyphae. Senescent pelotons and their surrounding host cytoplasm showed significantly higher isotope ratios than young pelotons and surrounding host cytoplasm. These results indicate an inflow of C to senescent hyphae, which was then transferred to the host. The findings of this study provide some support for each of the two contradictory hypotheses concerning nutrient exchange in the symbiotic protocorm: the interface between the symbionts is involved before fungal senescence, and peloton degradation also releases a significant amount of C and nitrogen to host cells.
Journal Article
The Relationship between Polyamines and Hormones in the Regulation of Wheat Grain Filling
2013
The grain weight of wheat is strongly influenced by filling. Polyamines (PA) are involved in regulating plant growth. However, the effects of PA on wheat grain filling and its mechanism of action are unclear. The objective of the present study was to investigate the relationship between PAs and hormones in the regulation of wheat grain filling. Three PAs, spermidine (Spd), spermine (Spm), and putrescine (Put), were exogenously applied, and the grain filling characteristics and changes in endogenous PA and hormones, i.e., indole-3-acetic acid (IAA), zeatin (Z) + zeatin riboside (ZR), abscisic acid (ABA), ethylene (ETH) and gibberellin 1+4 (GAs), were quantified during wheat grain filling. Exogenous applications of Spd and Spm significantly increased the grain filling rate and weight, but exogenous Put had no significant effects on these measures. Exogenous Spd and Spm significantly increased the endogenous Spd, Spm, Z+ZR, ABA, and IAA contents and significantly decreased ETH evolution in grains. The endogenous Spd, Spm and Z+ZR contents were positively and significantly correlated with the grain filling rate and weight of wheat, and the endogenous ETH evolution was negatively and significantly correlated with the wheat grain filling rate and weight. Based upon these results, we concluded that PAs were involved in the balance of hormones that regulated the grain filling of wheat.
Journal Article
The Molecular Mechanism of the Response of Rice to Arsenic Stress and Effective Strategies to Reduce the Accumulation of Arsenic in Grain
2024
Rice (Oryza sativa L.) is the staple food for more than 50% of the world’s population. Owing to its growth characteristics, rice has more than 10-fold the ability to enrich the carcinogen arsenic (As) than other crops, which seriously affects world food security. The consumption of rice is one of the primary ways for humans to intake As, and it endangers human health. Effective measures to control As pollution need to be studied and promoted. Currently, there have been many studies on reducing the accumulation of As in rice. They are generally divided into agronomic practices and biotechnological approaches, but simultaneously, the problem of using the same measures to obtain the opposite results may be due to the different species of As or soil environments. There is a lack of systematic discussion on measures to reduce As in rice based on its mechanism of action. Therefore, an in-depth understanding of the molecular mechanism of the accumulation of As in rice could result in accurate measures to reduce the content of As based on local conditions. Different species of As have different toxicity and metabolic pathways. This review comprehensively summarizes and reviews the molecular mechanisms of toxicity, absorption, transport and redistribution of different species of As in rice in recent years, and the agronomic measures to effectively reduce the accumulation of As in rice and the genetic resources that can be used to breed for rice that only accumulates low levels of As. The goal of this review is to provide theoretical support for the prevention and control of As pollution in rice, facilitate the creation of new types of germplasm aiming to develop without arsenic accumulation or within an acceptable limit to prevent the health consequences associated with heavy metal As as described here.
Journal Article
Novel Approach for Nontargeted Data Analysis for Metabolomics. Large-Scale Profiling of Tomato Fruit Volatiles
by
Tikunov, Yury
,
Bovy, Arnaud G
,
Bino, Raoul J
in
Agronomy. Soil science and plant productions
,
Automation
,
biochemical pathways
2005
To take full advantage of the power of functional genomics technologies and in particular those for metabolomics, both the analytical approach and the strategy chosen for data analysis need to be as unbiased and comprehensive as possible. Existing approaches to analyze metabolomic data still do not allow a fast and unbiased comparative analysis of the metabolic composition of the hundreds of genotypes that are often the target of modern investigations. We have now developed a novel strategy to analyze such metabolomic data. This approach consists of (1) full mass spectral alignment of gas chromatography (GC)-mass spectrometry (MS) metabolic profiles using the MetAlign software package, (2) followed by multivariate comparative analysis of metabolic phenotypes at the level of individual molecular fragments, and (3) multivariate mass spectral reconstruction, a method allowing metabolite discrimination, recognition, and identification. This approach has allowed a fast and unbiased comparative multivariate analysis of the volatile metabolite composition of ripe fruits of 94 tomato (Lycopersicon esculentum Mill.) genotypes, based on intensity patterns of >20,000 individual molecular fragments throughout 198 GC-MS datasets. Variation in metabolite composition, both between- and within-fruit types, was found and the discriminative metabolites were revealed. In the entire genotype set, a total of 322 different compounds could be distinguished using multivariate mass spectral reconstruction. A hierarchical cluster analysis of these metabolites resulted in clustering of structurally related metabolites derived from the same biochemical precursors. The approach chosen will further enhance the comprehensiveness of GC-MS-based metabolomics approaches and will therefore prove a useful addition to nontargeted functional genomics research.
Journal Article
Water Transport Properties of the Grape Pedicel during Fruit Development: Insights into Xylem Anatomy and Function Using Microtomography
by
McElrone, Andrew J.
,
Gambetta, Gregory A.
,
Fei, Jiong
in
Berries
,
Biological Transport
,
ECOPHYSIOLOGY AND SUSTAINABILITY
2015
Xylem flow of water into fruits declines during fruit development, and the literature indicates a corresponding increase in hydraulic resistance in the pedicel. However, it is unknown how pedicel hydraulics change developmentally in relation to xylem anatomy and function. In this study on grape (Vitis vinifera), we determined pedicel hydraulic conductivity (k
h) from pressure-flow relationships using hydrostatic and osmotic forces and investigated xylem anatomy and function using fluorescent light microscopy and x-ray computed microtomography. Hydrostatick
h(xylem pathway) was consistently 4 orders of magnitude greater than osmotick
h(intracellular pathway), but both declined before veraison by approximately 40% and substantially over fruit development. Hydrostatick
hdeclined most gradually for low (less than 0.08 MPa) pressures and for water inflow and outflow conditions. Specifick
h(per xylem area) decreased in a similar fashion tok
hdespite substantial increases in xylem area. X-ray computed microtomography images provided direct evidence that losses in pedicelk
hwere associated with blockages in vessel elements, whereas air embolisms were negligible. However, vessel elements were interconnected and some remained continuous postveraison, suggesting that across the grape pedicel, a xylem pathway of reducedk
hremains functional late into berry ripening.
Journal Article