Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
413
result(s) for
"Plants, Genetically Modified - adverse effects"
Sort by:
Allergenicity assessment of genetically modified crops--what makes sense
2008
GM crops have great potential to improve food quality, increase harvest yields and decrease dependency on certain chemical pesticides. Before entering the market their safety needs to be scrutinized. This includes a detailed analysis of allergenic risks, as the safety of allergic consumers has high priority. However, not all tests currently being applied to assessing allergenicity have a sound scientific basis. Recent events with transgenic crops reveal the fallacy of applying such tests to GM crops.
Journal Article
Transgenic crops expressing Bacillus thuringiensis toxins and biological control
2006
The area devoted to growing transgenic plants expressing insecticidal Cry proteins derived from
Bacillus thuringiensis
(
Bt
) is increasing worldwide. A major concern with the adoption of
Bt
crops is their potential impact on nontarget organisms including biological control organisms. Regulatory frameworks should advocate a step-wise (tiered) approach to assess possible nontarget effects of
Bt
crops. Laboratory and glasshouse studies have revealed effects on natural enemies only when
Bt
-susceptible, sublethally damaged herbivores were used as prey or host, with no indication of direct toxic effects. Field studies have confirmed that the abundance and activity of parasitoids and predators are similar in
Bt
and non-
Bt
crops. In contrast, applications of conventional insecticides have usually resulted in negative impacts on biological control organisms. Because
Bt
-transgenic varieties can lead to substantial reductions in insecticide use in some crops, they can contribute to integrated pest management systems with a strong biological control component.
Journal Article
Characterization of scientific studies usually cited as evidence of adverse effects of GM food/feed
2017
Summary GM crops are the most studied crops in history. Approximately 5% of the safety studies on them show adverse effects that are a cause for concern and tend to be featured in media reports. Although these reports are based on just a handful of GM events, they are used to cast doubt on all GM crops. Furthermore, they tend to come from just a few laboratories and are published in less important journals. Importantly, a close examination of these reports invariably shows methodological flaws that invalidate any conclusions of adverse effects. Twenty years after commercial cultivation of GM crops began, a bona fide report of an adverse health effect due to a commercialized modification in a crop has yet to be reported.
Journal Article
GMOs, Herbicides, and Public Health
by
Benbrook, Charles
,
Landrigan, Philip J
in
2,4-Dichlorophenoxyacetic Acid - toxicity
,
Biotechnology industry
,
Carcinogens
2015
The landscape for genetically modified organisms is changing, thanks to sharp increases in the amounts and numbers of chemical herbicides applied to GM crops and the classification of two of the most commonly used herbicides as probably or possibly carcinogenic to humans.
Genetically modified organisms (GMOs) are not high on most physicians' worry lists. If we think at all about biotechnology, most of us probably focus on direct threats to human health, such as prospects for converting pathogens to biologic weapons or the implications of new technologies for editing the human germline. But while those debates simmer, the application of biotechnology to agriculture has been rapid and aggressive. The vast majority of the corn and soybeans grown in the United States are now genetically engineered. Foods produced from GM crops have become ubiquitous. And unlike regulatory bodies in 64 other countries, the . . .
Journal Article
Mass spectrometric analysis of digesta does not improve the allergenicity assessment of GM crops
2021
An investigation of the potential allergenicity of newly expressed proteins in genetically modified (GM) crops comprises part of the assessment of GM crop safety. However, allergenicity is not completely predictable from a definitive assay result or set of protein characteristics, and scientific opinions regarding the data that should be used to assess allergenicity are continuously evolving. Early studies supported a correlation between the stability of a protein exposed to digestive enzymes such as pepsin and the protein’s status as a potential allergen, but over time the conclusions of these earlier studies were not confirmed. Nonetheless, many regulatory authorities, including the European Food Safety Authority (EFSA), continue to require digestibility analyses as a component of GM crop risk assessments. Moreover, EFSA has recently investigated the use of mass spectrometry (MS), to make digestion assays more predictive of allergy risk, because it can detect and identify small undigested peptides. However, the utility of MS is questionable in this context, since known allergenic peptides are unlikely to exist in protein candidates intended for commercial development. These protein candidates are pre-screened by the same bioinformatics processes that are normally used to identify MS targets. Therefore, MS is not a standalone allergen identification method and also cannot be used to predict previously unknown allergenic epitopes. Thus, the suggested application of MS for analysis of digesta does not improve the poor predictive power of digestion assays in identifying allergenic risk.
Journal Article
Ligand binding to an Allergenic Lipid Transfer Protein Enhances Conformational Flexibility resulting in an Increase in Susceptibility to Gastroduodenal Proteolysis
2016
Non-specific lipid transfer proteins (LTPs) are a family of lipid-binding molecules that are widely distributed across flowering plant species, many of which have been identified as allergens. They are highly resistant to simulated gastroduodenal proteolysis, a property that may play a role in determining their allergenicity and it has been suggested that lipid binding may further increase stability to proteolysis. It is demonstrated that LTPs from wheat and peach bind a range of lipids in a variety of conditions, including those found in the gastroduodenal tract. Both LTPs are initially cleaved during gastroduodenal proteolysis at three major sites between residues 39–40, 56–57 and 79–80, with wheat LTP being more resistant to cleavage than its peach ortholog. The susceptibility of wheat LTP to proteolyic cleavage increases significantly upon lipid binding. This enhanced digestibility is likely to be due to the displacement of Tyr79 and surrounding residues from the internal hydrophobic cavity upon ligand binding to the solvent exposed exterior of the LTP, facilitating proteolysis. Such knowledge contributes to our understanding as to how resistance to digestion can be used in allergenicity risk assessment of novel food proteins, including GMOs.
Journal Article
What's Killing American Honey Bees?
2007
Many European beekeepers complain of the same problem. [...]beekeepers and researchers do not understand the specific causes of the losses. [...]any factor--infections, chronic exposure to insecticides, inadequate nutrition, migration in adult population, and inadequate regulation of brood temperature might cause CCD-like symptoms. [...]I would not be surprised if they showed higher levels of stress-related viral infections.
Journal Article
Comparing agronomic and phenotypic plant characteristics between single and stacked events in soybean, maize, and cotton
by
Vertuan, Hallison
,
Sordi, Daniel
,
Bellini, Luiz F.
in
Agricultural biotechnology
,
Agricultural production
,
Agronomy
2020
Genetically modified (GM) crops are one of the most valuable tools of modern biotechnology that secure yield potential needed to sustain the global agricultural demands for food, feed, fiber, and energy. Crossing single GM events through conventional breeding has proven to be an effective way to pyramid GM traits from individual events and increase yield protection in the resulting combined products. Even though years of research and commercialization of GM crops show that these organisms are safe and raise no additional biosafety concerns, some regulatory agencies still require risk assessments for these products. We sought out to investigate whether stacking single GM events would have a significant impact on agronomic and phenotypic plant characteristics in soybean, maize, and cotton. Several replicated field trials designed as randomized complete blocks were conducted by Monsanto Regulatory Department from 2008 to 2017 in field sites representative of cultivation regions in Brazil. In total, twenty-one single and stacked GM materials currently approved for in-country commercial use were grown with the corresponding conventional counterparts and commercially available GM/non-GM references. The generated data were presented to the Brazilian regulatory agency CTNBio (National Biosafety Technical Committee) over the years to request regulatory approvals for the single and stacked products, in compliance with the existing normatives. Data was submitted to analysis of variance and differences between GM and control materials were assessed using t-test with a 5% significance level. Data indicated the predominance of similarities and neglectable differences between single and stacked GM crops when compared to conventional counterpart. Our results support the conclusion that combining GM events through conventional breeding does not alter agronomic or phenotypic plant characteristics in these stacked crops. This is compatible with a growing weight of evidence that indicates this long-adopted strategy does not increase the risks associated with GM materials. It also provides evidence to support the review and modernization of the existing regulatory normatives to no longer require additional risk assessments of GM stacks comprised of previously approved single events for biotechnology-derived crops. The data analyzed confirms that the risk assessment of the individual events is sufficient to demonstrate the safety of the stacked products, which deliver significant benefits to growers and to the environment.
Journal Article
No impact of transgenic cry1Ie maize on the diversity, abundance and composition of soil fauna in a 2-year field trial
2019
Soil fauna play an essential role in the soil ecosystem, but they may be influenced by insecticidal Cry proteins derived from
Bacillus thuringiensis
(Bt) maize. In this study, a 2-year field trial was conducted to study the effects of transgenic cry1Ie maize, a type of Bt maize (Event IE09S034), on soil fauna, with the near-isogenic line non-Bt maize (Zong 31) as a control. The soil animals were collected with Macfadyen heat extractor and hand-sorting methods, respectively, and their diversity, abundance and community composition were calculated. Then, the effects of maize type, year, sampling time and soil environmental factors on the soil fauna were evaluated by repeated-measures ANOVA, redundancy analysis (RDA) and nonmetric multidimensional scaling (nMDS). Repeated-measures ANOVA showed that the diversity and abundance of the soil fauna were not affected by maize type, while they were significantly influenced by year and sampling time. Furthermore, for both the Macfadyen and hand-sorting methods, RDA indicated that soil fauna community composition was not correlated with maize type (Bt and non-Bt maize) but was significantly correlated with year, sampling time and root biomass. In addition, it was significantly related to soil pH according to the hand-sorting method. nMDS indicated that soil fauna community composition was significantly correlated with year and sampling time; however, it was not associated with maize type. In this study, we collected soil faunal samples according to the Macfadyen and hand-sorting methods and processed the obtained data with ANOVA, RDA, and nMDS in three ways, and our data indicate that transgenic
cry1Ie
maize (Event IE09S034) had no substantial influence on the diversity, abundance or community composition of the soil fauna.
Journal Article
Yield Effects of Genetically Modified Crops in Developing Countries
by
Zilberman, David
,
Qaim, Matin
in
adverse effects
,
Agricultural biotechnology
,
Agricultural chemicals
2003
Onfarm field trials carried out with Bacillus thuringiensis (Bt) cotton in different states of India show that the technology substantially reduces pest damage and increases yields. The yield gains are much higher than what has been reported for other countries where genetically modified crops were used mostly to replace and enhance chemical pest control. In many developing countries, small-scale farmers especially suffer big pest-related yield losses because of technical and economic constraints. Pest-resistant genetically modified crops can contribute to increased yields and agricultural growth in those situations, as the case of Bt cotton in India demonstrates.
Journal Article