Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
9,098
result(s) for
"Point defects"
Sort by:
Selective Purcell enhancement of two closely linked zero-phonon transitions of a silicon carbide color center
by
Hu, Evelyn L.
,
Bracher, David O.
,
Zhang, Xingyu
in
Applied Physical Sciences
,
Color
,
Color centers
2017
Point defects in silicon carbide are rapidly becoming a platform of great interest for single-photon generation, quantum sensing, and quantum information science. Photonic crystal cavities (PCCs) can serve as an efficient light–matter interface both to augment the defect emission and to aid in studying the defects’ properties. In this work, we fabricate 1D nanobeam PCCs in 4H-silicon carbide with embedded silicon vacancy centers. These cavities are used to achieve Purcell enhancement of two closely spaced defect zero-phonon lines (ZPL). Enhancements of >80-fold are measured using multiple techniques. Additionally, the nature of the cavity coupling to the different ZPLs is examined.
Journal Article
The point defect and electronic structure of K doped LaCo0.9Fe0.1O3 perovskite with enhanced microwave absorbing ability
by
Zhang, Peng
,
Cao, Xingzhong
,
Wu, Yue
in
Absorption
,
Atomic/Molecular Structure and Spectra
,
Biomedicine
2022
ABO
3
perovskites, owning unique properties, have great research prospect in electromagnetic wave absorption field. Normally, doping can significantly regulate the dielectric loss, whereas the magnetic loss can be ignored. In this work, the crystal structure and electromagnetic properties can be regulated systematically by the K, Fe co-doping for LaCoO
3
perovskites (LKCFO) under the condition of fixed F content. In addition, the obtained samples show the obvious interfacial polarization effect on accounting to the small size effect, which is conducive to the effective microwave absorption. By analyzing the evolution of the positron annihilation lifetime and the first-principles calculation of the oxygen density of states for the series of LKCFO perovskites, it is found that the charge transport characteristics will be controlled by the point defect generated by allelic doping. The point defect content decreases and then increases as the doping level rises. The prepared perovskite exhibits the lowest defect density and the largest dielectric loss capability, which indicates that the lower point defects promote electron migration and thus enhance the dielectric loss; thus, the electromagnetic wave absorption bandwidth up to 6.2 GHz is reached. In contrast, both insufficient and excessive K doping are detrimental to the enhancement of microwave absorption. Especially, the practical application value was investigated using Computer Simulation Technology (CST) simulations. The LKCFO-2 exhibits the smallest RCS value (below −10 dBm
2
) at almost −90°–90° with a thickness of 2 mm, providing an effective method for study excellent microwave absorption and scattering property.
Journal Article
Energetics of Intrinsic Point Defects in NpO2 from DFT + U Calculations
by
Li, Laiyang
,
Qiu, Ruizhi
,
Wang, Shuaipeng
in
Antisite defects
,
Approximation
,
Chemical properties
2025
Intrinsic point defects in NpO2 significantly impact its chemical properties, but their formation mechanisms are not fully understood. Using first-principles plane-wave pseudopotential methods, this study systematically investigates the formation processes of Schottky, Frenkel, and substitutional impurity defects under various oxygen environments. Results show that formation energies vary with valence states, oxygen environments, and Fermi energy, and reveal the presence of antisite defects. Schottky, Frenkel, and antisite defects are rare in oxygen-rich conditions, but new defect pairs emerge in anoxic environments, including Schottky defect {2VNp3−: 3VO2+}, Np-Frenkel defects {VNp3−: Npi3+} and {VNp4+: Npi4+}, and pairs {ONp5+: NpO5−} and {ONp6+: NpO6−}. These findings provide new perspectives for understanding the intrinsic point defects in NpO2.
Journal Article
Point defects in ZnO: an approach from first principles
2011
Recent first-principles studies of point defects in ZnO are reviewed with a focus on native defects. Key properties of defects, such as formation energies, donor and acceptor levels, optical transition energies, migration energies and atomic and electronic structure, have been evaluated using various approaches including the local density approximation (LDA) and generalized gradient approximation (GGA) to DFT, LDA+U/GGA+U, hybrid Hartree-Fock density functionals, sX and GW approximation. Results significantly depend on the approximation to exchange correlation, the simulation models for defects and the post-processes to correct shortcomings of the approximation and models. The choice of a proper approach is, therefore, crucial for reliable theoretical predictions. First-principles studies have provided an insight into the energetics and atomic and electronic structures of native point defects and impurities and defect-induced properties of ZnO. Native defects that are relevant to the n-type conductivity and the non-stoichiometry toward the O-deficient side in reduced ZnO have been debated. It is suggested that the O vacancy is responsible for the non-stoichiometry because of its low formation energy under O-poor chemical potential conditions. However, the O vacancy is a very deep donor and cannot be a major source of carrier electrons. The Zn interstitial and anti-site are shallow donors, but these defects are unlikely to form at a high concentration in n-type ZnO under thermal equilibrium. Therefore, the n-type conductivity is attributed to other sources such as residual impurities including H impurities with several atomic configurations, a metastable shallow donor state of the O vacancy, and defect complexes involving the Zn interstitial. Among the native acceptor-type defects, the Zn vacancy is dominant. It is a deep acceptor and cannot produce a high concentration of holes. The O interstitial and anti-site are high in formation energy and/or are electrically inactive and, hence, are unlikely to play essential roles in electrical properties. Overall defect energetics suggests a preference for the native donor-type defects over acceptor-type defects in ZnO. The O vacancy, Zn interstitial and Zn anti-site have very low formation energies when the Fermi level is low. Therefore, these defects are expected to be sources of a strong hole compensation in p-type ZnO. For the n-type doping, the compensation of carrier electrons by the native acceptor-type defects can be mostly suppressed when O-poor chemical potential conditions, i.e. low O partial pressure conditions, are chosen during crystal growth and/or doping.
Journal Article
Phase Transition and Point Defects in the Ferroelectric Molecular Perovskite (MDABCO)(NH4)I3
by
Cordero, Francesco
,
Dinescu, Maria
,
Zanotti, Gloria
in
Anelasticity
,
Cooling
,
Crystal defects
2023
We measured the anelastic, dielectric and structural properties of the metal-free molecular perovskite (ABX3) (MDABCO)(NH4)I3, which has already been demonstrated to become ferroelectric below TC= 448 K. Both the dielectric permittivity measured in air on discs pressed from powder and the complex Young’s modulus measured on resonating bars in a vacuum show that the material starts to deteriorate with a loss of mass just above TC, introducing defects and markedly lowering TC. The elastic modulus softens by 50% when heating through the initial TC, contrary to usual ferroelectrics, which are stiffer in the paraelectric phase. This is indicative of improper ferroelectricity, in which the primary order parameter of the transition is not the electric polarization, but the orientational order of the MDABCO molecules. The degraded material presents thermally activated relaxation peaks in the elastic energy loss, whose intensities increase together with the decrease in TC. The peaks are much broader than pure Debye due to the general loss of crystallinity. This is also apparent from X-ray diffraction, but their relaxation times have parameters typical of point defects. It is argued that the major defects should be of the Schottky type, mainly due to the loss of (MDABCO)2+ and I−, leaving charge neutrality, and possibly (NH4)+ vacancies. The focus is on an anelastic relaxation process peaked around 200 K at ∼1 kHz, whose relaxation time follows the Arrhenius law with τ0 ∼ 10−13 s and E≃0.4 eV. This peak is attributed to I vacancies (VX) hopping around MDABCO vacancies (VA), and its intensity presents a peculiar dependence on the temperature and content of defects. The phenomenology is thoroughly discussed in terms of lattice disorder introduced by defects and partition of VX among sites that are far from and close to the cation vacancies. A method is proposed for calculating the relative concentrations of VX, that are untrapped, paired with VA or forming VX–VA–VX complexes.
Journal Article
Modeling of the Point Defect Migration across the AlN/GaN Interfaces—Ab Initio Study
by
Hrytsak, Roman
,
Grzanka, Ewa
,
Sznajder, Malgorzata
in
Aluminum nitride
,
Band theory
,
Crystal defects
2022
The formation and diffusion of point defects have a detrimental impact on the functionality of devices in which a high quality AlN/GaN heterointerface is required. The present paper demonstrated the heights of the migration energy barriers of native point defects throughout the AlN/GaN heterointerface, as well as the corresponding profiles of energy bands calculated by means of density functional theory. Both neutral and charged nitrogen, gallium, and aluminium vacancies were studied, as well as their complexes with a substitutional III-group element. Three diffusion mechanisms, that is, the vacancy mediated, direct interstitial, and indirect ones, in bulk AlN and GaN crystals, as well at the AlN/GaN heterointerface, were taken into account. We showed that metal vacancies migrated across the AlN/GaN interface, overcoming a lower potential barrier than that of the nitrogen vacancy. Additionally, we demonstrated the effect of the inversion of the electric field in the presence of charged point defects VGa3− and VAl3− at the AlN/GaN heterointerface, not reported so far. Our findings contributed to the issues of structure design, quality control, and improvement of the interfacial abruptness of the AlN/GaN heterostructures.
Journal Article
Intrinsic Point Defects in Silica for Fiber Optics Applications
by
Agnello, Simonpietro
,
Cannas, Marco
,
Lo Piccolo, Giuseppe Mattia
in
Amorphous materials
,
Amorphous silicon
,
Atomic structure
2021
Due to its unique properties, amorphous silicon dioxide (a-SiO2) or silica is a key material in many technological fields, such as high-power laser systems, telecommunications, and fiber optics. In recent years, major efforts have been made in the development of highly transparent glasses, able to resist ionizing and non-ionizing radiation. However the widespread application of many silica-based technologies, particularly silica optical fibers, is still limited by the radiation-induced formation of point defects, which decrease their durability and transmission efficiency. Although this aspect has been widely investigated, the optical properties of certain defects and the correlation between their formation dynamics and the structure of the pristine glass remains an open issue. For this reason, it is of paramount importance to gain a deeper understanding of the structure–reactivity relationship in a-SiO2 for the prediction of the optical properties of a glass based on its manufacturing parameters, and the realization of more efficient devices. To this end, we here report on the state of the most important intrinsic point defects in pure silica, with a particular emphasis on their main spectroscopic features, their atomic structure, and the effects of their presence on the transmission properties of optical fibers.
Journal Article
Reduced Bipolar Conduction in Bandgap-Engineered n-Type Cu0.008Bi2(Te,Se)3 by Sulfur Doping
2020
Significant bipolar conduction of the carriers in Bi2Te3-based alloys occurs at high temperatures due to their narrow bandgaps. Therefore, at high temperatures, their Seebeck coefficients decrease, the bipolar thermal conductivities rapidly increase, and the thermoelectric figure of merit, zT, rapidly decreases. In this study, band modification of n-type Cu0.008Bi2(Te,Se)3 alloys by sulfur (S) doping, which could widen the bandgap, is investigated regarding carrier transport properties and bipolar thermal conductivity. The increase in bandgap by S doping is demonstrated by the Goldsmid–Sharp estimation. The bipolar conduction reduction is shown in the carrier transport characteristics and thermal conductivity. In addition, S doping induces an additional point-defect scattering of phonons, which decreases the lattice thermal conductivity. Thus, the total thermal conductivity of the S-doped sample is reduced. Despite the reduced power factor due to the unfavorable change in the conduction band, zT at high temperatures is increased by S doping with simultaneous reductions in bipolar and lattice thermal conductivity.
Journal Article
Point defects in 2-D liquid crystals with a singular potential: Profiles and stability
2024
We study radial symmetric point defects with degree
k
2
in the 2-D disk or ℝ
2
in the
Q
-tensor framework with a singular bulk energy, which is defined by Bingham closure. First, we obtain the existence of solutions for the profiles of radial symmetric point defects with degree
k
2
in the 2-D disk or ℝ
2
. Then, we prove that the solution is stable for ∣
k
∣ = 1 and unstable for ∣
k
∣ > 1. Some identities are derived and utilized throughout the proof of existence and stability/instability.
Journal Article
Orientation Dependence of Cathodoluminescence and Photoluminescence Spectroscopy of Defects in Chemical-Vapor-Deposited Diamond Microcrystal
by
Łoś, Szymon
,
Winiecki, Janusz
,
Szybowicz, Mirosław
in
Atomic structure
,
Cathodoluminescence
,
Chemical vapor deposition
2020
Point defects, impurities, and defect–impurity complexes in diamond microcrystals were studied with the cathodoluminescence (CL) spectroscopy in the scanning electron microscope, photoluminescence (PL), and Raman spectroscopy (RS). Such defects can influence the directions that microcrystals are grown. Micro-diamonds were obtained by a hot-filament chemical vapor deposition (HF CVD) technique from the methane–hydrogen gas mixture. The CL spectra of diamond microcrystals taken from (100) and (111) crystallographic planes were compared to the CL spectrum of a (100) oriented Element Six diamond monocrystal. The following color centers were identified: 2.52, 2.156, 2.055 eV attributed to a nitrogen–vacancy complex and a violet-emitting center (A-band) observed at 2.82 eV associated with dislocation line defects, whose atomic structure is still under discussion. The Raman studies showed that the planes (111) are more defective in comparison to (100) planes. What is reflected in the CL spectra as (111) shows a strong band in the UV region (2.815 eV) which is not observed in the case of the (100) plane.
Journal Article