Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
4,046
result(s) for
"Polyanilines"
Sort by:
Preparations, Properties, and Applications of Polyaniline and Polyaniline Thin Films—A Review
by
Beygisangchin, Mahnoush
,
Abdul Rashid, Suraya
,
Shafie, Suhaidi
in
Acids
,
Antioxidants
,
Batteries
2021
Polyaniline (PANI) is a famous conductive polymer, and it has received tremendous consideration from researchers in the field of nanotechnology for the improvement of sensors, optoelectronic devices, and photonic devices. PANI is doped easily by different acids and dopants because of its easy synthesis and remarkable environmental stability. This review focuses on different preparation processes of PANI thin film by chemical and physical methods. Several features of PANI thin films, such as their magnetic, redox, and antioxidant, anti-corrosion, and electrical and sensing properties, are discussed in this review. PANI is a highly conductive polymer. Given its unique properties, easy synthesis, low cost, and high environmental stability in various applications such as electronics, drugs, and anti-corrosion materials, it has attracted extensive attention. The most important PANI applications are briefly reviewed at the end of this review.
Journal Article
Anionic Methyl Orange Removal from Aqueous Solutions by Activated Carbon Reinforced Conducting Polyaniline as Adsorbent: Synthesis, Characterization, Adsorption Behavior, Regeneration and Kinetics Study
2022
This work investigated the elimination of Methyl Orange (MO) using a new adsorbent prepared from Activated Carbon (AC) with polyaniline reinforced by a simple oxidation chemical method. The prepared materials were characterized using XRD, TGA, FTIR and nitrogen adsorption isotherms. Furthermore, PANI@CA highest specific surface area values (near 332 m2 g−1) and total mesoporous volume (near 0.038 cm3 g−1) displayed the better MO removal capacity (192.52 mg g−1 at 298 K and pH 6.0), which is outstandingly higher than that of PANI (46.82 mg g−1). Besides, the process’s adsorption, kinetics, and isothermal analysis were examined using various variables such as pH, MO concentration and contact time. To pretend the adsorption kinetics, various kinetics models, the pseudo first- and pseudo second- orders, were exercised to the experimental results. The kinetic analysis revealed that the pseudo second order rate law performed better than the pseudo first order rate law in promoting the formation of the chemisorption phase. In the case of isothermal studies, an analysis of measured correlation coefficient (R2) values showed that the Langmuir model was a better match to experimental results than the Freundlich model. By regeneration experiments after five cycles, acceptable results were observed.
Journal Article
Application of polyaniline-based adsorbents for dye removal from water and wastewater—a review
2019
Several industries release varying concentration of dye-laden effluent with substantial negative consequences for any receiving environmental compartment. The control of water pollution and tighter restriction on wastewater discharge directly into the environment to reduce the potential ecotoxicological effect of dyes is forcing processors to retreat and reuse process water and chemicals. Among the different available technologies, the adsorption process has been recognized to be one of the finest and cost-effective wastewater treatment technologies. Various adsorbents have been utilized to remove toxic dyes from water and wastewater. Here, we review the application of polyaniline-based polymeric adsorbent for the adsorption of dyes which have been received considerable attention. To date, various modifications of polyaniline have been explored to improve the adsorption properties. Review on the application of polyaniline for adsorption of dyes has not been present till date. This article provides relevant literature on the application of various polyaniline composites for removing dyes, and their adsorption capacities with their experimental conditions have been compiled. It is evident from the literature survey that polyaniline provides a better opportunity for scientists for the effective removal of various dye.
Journal Article
A review on polyaniline and its composites: from synthesis to properties and progressive applications
2024
Polyaniline (PAni) is a widely studied conductive polymer that has unique properties such as high conductivity and stability. However, poor solubility and mechanical properties limit its prospective applications. To overcome these limitations, different synthesis methods have been developed and studied. One of these methods is to make the composites of PAni which displayed prominent results not only in addressing poor stability but also in achieving high mechanical properties. This review summarizes various synthesis methods, properties, and applications of PAni composites that have been incorporated with different materials such as carbon, carbon nanotube, graphite, graphene oxide, metal and metal oxides, metal–organic framework, bio-molecules, silica, and many more to enhance their potential applications. The most important applications of the PAni composite are briefly revealed at the end of this review and discussed appropriately.
Journal Article
Review on recent advancements in the role of electrolytes and electrode materials on supercapacitor performances
by
Singh, R. S
,
Patel, R. P
,
Patel, Suresh Kumar
in
Addition polymerization
,
Aqueous electrolytes
,
Capacitance
2024
Supercapacitors currently hold a prominent position in energy storage systems due to their exceptionally high power density, although they fall behind batteries and fuel cells in terms of energy density. This paper examines contemporary approaches aimed at enhancing the energy density of supercapacitors by adopting hybrid configurations, alongside considerations of their power density, rate capability, and cycle stability. Given that electrodes play a pivotal role in supercapacitor cells, this review focuses on the design of hybrid electrode structures with elevated specific capacitance, shedding light on the underlying mechanisms. Factors such as available surface area, porosity, and conductivity of the constituent materials significantly influence electrode performance, prompting the adoption of strategies such as nanostructuring. Additionally, the paper delves into the impact of novel bio-based hybrid electrolytes, drawing upon literature data to outline the fabrication of various hybrid electrode materials incorporating conducting polymers like polyaniline and polypyrrole, as well as metal oxides, carbon compounds, and hybrid electrolytes such as ionic liquids, gel polymers, aqueous, and solid polymer electrolytes. The discussion explores the contributions of different components and methodologies to overall capacitance, with a primary emphasis on the mechanisms of energy storage through non-faradic electrical double-layer capacitance and faradaic pseudo-capacitance. Furthermore, the paper addresses the electrochemical performance of hybrid components, examining their concentrations and functioning via diverse charge storage techniques.
Journal Article
Coordination modulation of hydrated zinc ions to enhance redox reversibility of zinc batteries
2023
The dendrite growth of zinc and the side reactions including hydrogen evolution often degrade performances of zinc-based batteries. These issues are closely related to the desolvation process of hydrated zinc ions. Here we show that the efficient regulation on the solvation structure and chemical properties of hydrated zinc ions can be achieved by adjusting the coordination micro-environment with zinc phenolsulfonate and tetrabutylammonium 4-toluenesulfonate as a family of electrolytes. The theoretical understanding and in-situ spectroscopy analysis revealed that the favorable coordination of conjugated anions involved in hydrogn bond network minimizes the activate water molecules of hydrated zinc ion, thus improving the zinc/electrolyte interface stability to suppress the dendrite growth and side reactions. With the reversibly cycling of zinc electrode over 2000 h with a low overpotential of 17.7 mV, the full battery with polyaniline cathode demonstrated the impressive cycling stability for 10000 cycles. This work provides inspiring fundamental principles to design advanced electrolytes under the dual contributions of solvation modulation and interface regulation for high-performing zinc-based batteries and others.
Zinc-based batteries suffer from the dendrite growth and surface passivation of zinc derived from the unfavourable deposition and side reactions. Here, the authors modulate the coordination chemistry of hydrated zinc ions via electrolyte-design and gain insights into the reversible cycling of long-lived zinc electrode.
Journal Article
Modulating electrolyte structure for ultralow temperature aqueous zinc batteries
2020
Rechargeable aqueous batteries are an up-and-coming system for potential large-scale energy storage due to their high safety and low cost. However, the freeze of aqueous electrolyte limits the low-temperature operation of such batteries. Here, we report the breakage of original hydrogen-bond network in ZnCl
2
solution by modulating electrolyte structure, and thus suppressing the freeze of water and depressing the solid-liquid transition temperature of the aqueous electrolyte from 0 to –114 °C. This ZnCl
2
-based low-temperature electrolyte renders polyaniline||Zn batteries available to operate in an ultra-wide temperature range from –90 to +60 °C, which covers the earth surface temperature in record. Such polyaniline||Zn batteries are robust at –70 °C (84.9 mA h g
−1
) and stable during over 2000 cycles with ~100% capacity retention. This work significantly provides an effective strategy to propel low-temperature aqueous batteries via tuning the electrolyte structure and widens the application range of temperature adaptation of aqueous batteries.
Rechargeable aqueous batteries are promising for potential large-scale energy storage due to their high safety and low cost. Here the authors analyse a zinc chloride based low-temperature electrolyte for improving practicability of the aqueous batteries.
Journal Article
Evaluation of synthesized polyaniline nanofibres as corrosion protection film coating on copper substrate by electrophoretic deposition
2022
In this current paper, we report the use of inexpensive, simple electrophoretic deposition (EPD) technique in developing polyaniline (PANI) aqueous colloidal suspension coating on copper (Cu) substrate. Polyaniline nanoparticle films were deposited electrophoretically on the surface of copper sheet electrode. A colloidal suspension with high stability was produced by a liquid polyaniline in the presence of formic acid and acetonitrile as electrolyte for the EPD process. The suspension of the PANI was characterized by measuring the zeta potential of the suspension using zeta-sizer analyser. The PANI coating was used as barrier for corrosion protection of the Cu sheet. Operating parameters such as operating time, applied voltage, and the concentration were used with deposition at the cathode. Characterization such as XRD, SEM, FT-IR, and UV–Vis was carried out, and the corrosion protection offered by the PANI on the Cu surface was examined using potentiodynamic (Tafel) polarization in 3.5% NaCl solution at room temperature. As a result, the optimum parameters for obtaining a homogenous coating on the Cu sheet were attained at the voltage of 15 V and deposition time of 180 s with 50 mg/mL PANI concentration. The attained results indicated inhibition efficiency for PANI deposit of 92.92% indicating protection against corrosion.
Journal Article
Flexible Methyl Cellulose/Polyaniline/Silver Composite Films with Enhanced Linear and Nonlinear Optical Properties
by
Berber, Mohamed R.
,
Abdelreheem, Ahmed M.
,
Abdelhamied, Mostufa M.
in
Biosensors
,
Carbon
,
Cellulose
2021
In order to potentiate implementations in optical energy applications, flexible polymer composite films comprising methyl cellulose (MC), polyaniline (PANI) and silver nanoparticles (AgNPs) were successfully fabricated through a cast preparation method. The composite structure of the fabricated film was confirmed by X-ray diffraction and infrared spectroscopy, indicating a successful incorporation of AgNPs into the MC/PANI blend. The scanning electron microscope (SEM) images have indicated a homogenous loading and dispersion of AgNPs into the MC/PANI blend. The optical parameters such as band gap (Eg), absorption edge (Ed), number of carbon cluster (N) and Urbach energy (Eu) of pure MC polymer, MC/PANI blend and MC/PANI/Ag films were determined using the UV optical absorbance. The effects of AgNPs and PANI on MC polymer linear optical (LO) and nonlinear optical (NLO) parameters including reflection extinction coefficient, refractive index, dielectric constant, nonlinear refractive index, and nonlinear susceptibility are studied. The results showed a decrease in the band gap of MC/PANI/AgNPs compared to the pure MC film. Meanwhile, the estimated carbon cluster number enhanced with the incorporation of the AgNPs. The inclusion of AgNPs and PANI has enhanced the optical properties of the MC polymer, providing a new composite suitable for energy conversion systems, solar cells, biosensors, and nonlinear optical applications.
Journal Article