Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
68 result(s) for "Poria - chemistry"
Sort by:
Poria cocus Wolf Extract Ameliorates Hepatic Steatosis through Regulation of Lipid Metabolism, Inhibition of ER Stress, and Activation of Autophagy via AMPK Activation
Poria cocos Wolf (PCW) is an edible, pharmaceutical mushroom with remarkable biological properties including anti-tumor, anti-inflammation, anti-oxidation, anti-ageing, and anti-diabetic effects. In the current study, we investigated the effects of PCW extract on hepatic steatosis under in vitro and in vivo conditions, and elucidated the underlying mechanisms. In this study, a mixture of HepG2 cells treated with free fatty acid (FFA)—palmitic and oleic acid—and high-fat diet (HFD)-fed obese mice were used; in this background, the triglyceride (TG) levels in HepG2 cells and mice liver were measured, and the expression levels of genes associated with lipogenesis, fatty acid oxidation, endoplasmic reticulum (ER) stress, and autophagy were determined. Treatment of HepG2 cells with FFA enhanced intracellular TG levels in HepG2 cells, but co-treatment with PCW significantly attenuated the TG levels. Notably, PCW significantly enhanced the phosphorylation of AMP-activated protein kinase (AMPK), acetyl-CoA carboxylase (ACC), and sterol regulatory element-binding protein-1c (SREBP-1c) in FFA-treated HepG2 cells. PCW downregulated the expression of lipogenesis-related genes, but upregulated the expression of genes associated with fatty acid oxidation. Further, PCW inhibited FFA-induced expression of ER stress markers and induced autophagy proteins. However, inhibition of AMPK significantly attenuated the beneficial effects of PCW in HepG2 cells. Moreover, PCW efficiently decreased HFD-induced hepatic TG accumulation in vivo and increased the phosphorylation of hepatic AMPK. Three compounds present in PCW including poricoic acid, pachymic acid, and ergosterol, significantly decreased FFA-induced increase in intracellular TG levels, consistent with increased AMPK phosphorylation, suggesting that poricoic acid, pachymic acid, and ergosterol are responsible for PCW-mediated amelioration of hepatic steatosis. Taken together, these results demonstrated that PCW ameliorates hepatic steatosis through the regulation of lipid metabolism, inhibition of ER stress, and activation of autophagy in an AMPK-dependent manner. This suggested that PCW can be potentially used for the treatment of hepatic steatosis.
Quantification of Chemical Groups and Quantitative HPLC Fingerprint of Poria cocos (Schw.) Wolf
(1)Objective: In this study, a quantitative analysis of chemical groups (the triterpenoids, water-soluble polysaccharides, and acidic polysaccharides) and quantitative high liquid performance chromatography (HPLC) fingerprint of Poria cocos (Schw.) Wolf (PC) for quality control was developed. (2) Methodology: First, three main chemical groups, including triterpenoids, water-soluble polysaccharides, and acidic polysaccharides, in 16 batches of PC were evaluated by ultraviolet spectrophotometry. Afterward, the quantitative fingerprint of PC was established, and the alcohol extract of PC was further evaluated. The method involves establishing 16 batches of PC fingerprints by HPLC, evaluating the similarity of different batches of PC, and identifying eight bioactive components, including poricoic acid B (PAB), dehydrotumulosic acid (DTA), poricoic acid A (PAA), polyporenic acid C (PAC), 3-epidehydrotumulosic acid (EA), dehydropachymic acid (DPA), dehydrotrametenolic acid (DTA-1), and dehydroeburicoic acid (DEA), in PC by comparison with the reference substance. Combined with the quantitative analysis of multi-components by a single marker (QAMS), six bioactive ingredients, including PAB, DTA, PAC, EA, DPA, and DEA, in PC from different places were established. In addition, the multivariate statistical analyses, such as principal component analysis and heatmap hierarchical clustering analysis are more intuitive, and the visual analysis strategy was used to evaluate the content of bioactive components in 16 batches of PC. Finally, the analysis strategy of three main chemical groups in PC was combined with the quantitative fingerprint strategy, which reduced the error caused by the single method. (3) Results: The establishment of a method for the quantification of chemical groups and quantitative HPLC fingerprint of PC was achieved as demonstrated through the quantification of six triterpenes in PC by a single marker. (4) Conclusions: Through qualitative and quantitative chemical characterization, a multi-directional, simple and efficient routine evaluation method of PC quality was established. The results reveal that this strategy can provide an analytical method for the quality evaluation of PC and other Chinese medicinal materials.
Efficient Combination of Complex Chromatography, Molecular Docking and Enzyme Kinetics for Exploration of Acetylcholinesterase Inhibitors from Poria cocos
Poria cocos (P. cocos) is a traditional Chinese medicinal product with the same origin as medicine and food. It has diuretic, anti-inflammatory and liver protection properties, and has been widely used in a Chinese medicine in the treatment of Alzheimer’s disease (AD). This study was conducted to explore the activity screening, isolation of acetylcholinesterase inhibitors (AChEIs), and in vitro inhibiting effect of P. cocos. The aim was to develop a new extraction process optimization method based on the Matlab genetic algorithm combined with a traditional orthogonal experiment. Moreover, bio−affinity ultrafiltration combined with molecular docking was used to screen and evaluate the activity of the AChEIs, which were subsequently isolated and purified using high-speed counter−current chromatography (HSCCC) and semi−preparative high-performance liquid chromatography (semi−preparative HPLC). The change in acetylcholinesterase (AChE) activity was tested using an enzymatic reaction kinetics experiment to reflect the inhibitory effect of active compounds on AChE and explore its mechanism of action. Five potential AChEIs were screened via bio−affinity ultrafiltration. Molecular docking results showed that they had good binding affinity for the active site of AChE. Meanwhile, the five active compounds had reversible inhibitory effects on AChE: Polyporenic acid C and Tumulosic acid were non-competitive inhibitors; 3−Epidehydrotumulosic acid was a mixed inhibitor; and Pachymic acid and Dehydrotrametenolic acid were competitive inhibitors. This study provided a basis for the comprehensive utilization of P. cocos and drug development for the treatment of AD.
Poria cocos inhibits the invasion, migration, and epithelial–mesenchymal transition of gastric cancer cells by inducing ferroptosis in cells
Objective Gastric cancer (GC) is one of the most prevalent malignant tumors of the digestive system. The advanced metastasis of gastric cancer severely limits the conventional approaches for its treatment, while certain traditional Chinese medicinal compounds have been reported to possess promising abilities in inhibiting tumor metastasis. Such as Poria (PA), known as Fu Ling in Chinese, is a commonly used traditional Chinese medicinal herb derived from Poria cocos, a fungus belonging to the polyporaceae family. Methods The proliferation capacity of cells was measured using the MTT assay, while the invasion and migration abilities of cells after treatment with different concentrations of PA were evaluated through wound healing assay and Transwell assay. The differential expression of mRNA was analyzed using qPCR. The in vivo growth of tumors was assessed by subcutaneous tumor formation in mice. Results Both in vivo and in vitro experiments have demonstrated that PA significantly inhibits the proliferation of GC. Moreover, in vitro experiments have revealed that PA not only suppresses the invasion and migration of GC cells but also reverses TNF-β-induced EMT. Further experiments have revealed that PA inhibits cell invasion, migration and EMT by inducing ferroptosis in GC cells. Conclusion In brief, the present study shows that PA inhibits tumor metastasis by inducing ferroptosis in GC cells. Our findings suggest that PA may have therapeutic potential in GC.
Ultra Performance Liquid Chromatography-Based Metabonomic Study of Therapeutic Effect of the Surface Layer of Poria cocos on Adenine-Induced Chronic Kidney Disease Provides New Insight into Anti-Fibrosis Mechanism
The surface layer of Poria cocos (Fu-Ling-Pi, FLP) is commonly used in traditional Chinese medicine and its diuretic effect was confirmed in rat. Ultra performance liquid chromatography/quadrupole time-of-flight high-sensitivity mass spectrometry and a novel mass spectrometry(Elevated Energy) data collection technique was employed to investigate metabonomic characteristics of chronic kidney disease (CKD) induced from adenine excess and the protective effects of FLP. Multiple metabolites are detected in the CKD and are correlated with progressive renal injury. Among these biomarkers, lysoPC(18∶0), tetracosahexaenoic acid, lysoPC(18∶2), creatinine, lysoPC (16∶0) and lysoPE(22∶0/0∶0) in the FLP-treated group were completely reversed to levels in the control group which lacked CKD. Combined with biochemistry and histopathology results, the changes in serum metabolites indicate that the perturbations of phospholipids metabolism, energy metabolism and amino acid metabolism are related to adenine-induced CKD and to the interventions of FLP on all the three metabolic pathways. FLP may regulate the metabolism of these biomarkers, especially their efficient utilization within the context of CKD. Furthermore, these biomarkers might serve as characteristics to explain the mechanisms of FLP.
Screening and Analysis of the Potential Bioactive Components of Poria cocos (Schw.) Wolf by HPLC and HPLC-MS(n) with the Aid of Chemometrics
The aim of the present study was to establish a new method based on Similarity Analysis (SA), Cluster Analysis (CA) and Principal Component Analysis (PCA) to determine the quality of different samples of Poria cocos (Schw.) Wolf obtained from Yunnan, Hubei, Guizhou, Fujian, Henan, Guangxi, Anhui and Sichuan in China. For this purpose 15 samples from the different habitats were analyzed by HPLC-PAD and HPLC-MS(n). Twenty-three compounds were detected by HPLC-MS(n), of which twenty compounds were tentatively identified by comparing their retention times and mass spectrometry data with that of reference compounds and reviewing the literature. The characteristic fragmentations were summarized. 3-epi-Dehydrotumulosic acid (F13), 3-oxo-16α,25-dihydroxylanosta-7,9(11),24(31)-trien-21-oic acid (F4), 3-oxo-6,16α-dihydroxylanosta-7,9(11),24(31)-trien-21-oic acid (F7) and dehydropachymic acid (F15) were deemed to be suitable marker compounds to distinguish between samples of different quality according to CA and PCA. This study provides helpful chemical information for further anti-tumor activity and active mechanism research on P. cocos. The results proved that fingerprint combined with a chemometric approach is a simple, rapid and effective method for the quality discrimination of P. cocos.
Chaga (Inonotus obliquus), a Future Potential Medicinal Fungus in Oncology? A Chemical Study and a Comparison of the Cytotoxicity Against Human Lung Adenocarcinoma Cells (A549) and Human Bronchial Epithelial Cells (BEAS-2B)
Background: Inonotus obliquus, also known as Chaga, is a parasitic fungus growing on birches and used in traditional medicine (especially by Khanty people) to treat various health problems. In this study, we aimed to quantify the 3 metabolites frequently cited in literature, that is, betulin, betulinic acid, and inotodiol in the Chaga recently discovered in forests located in Normandy (France), and to compare their concentrations with Ukrainian and Canadian Chaga. This study also explores the cytotoxicity of the French Chaga against cancer-derived cells and transformed cells. Methods: A quantification method by HPLC-MS-MS (high-performance liquid chromatography–tandem mass spectrometry) of betulin, betulinic acid, and inotodiol was developed to study the French Chaga and compare the concentration of these metabolites with extracts provided from Chaga growing in Canada and Ukraine. This method was also used to identify and quantify those 3 compounds in other traditional preparations of Chaga (aqueous extract, infusion, and decoction). Among these preparations, the aqueous extract that contains betulin, betulinic acid, and inotodiol was chosen to evaluate and compare its cytotoxic activity toward human lung adenocarcinoma cells (A549 line) and human bronchial epithelial cells (BEAS-2B line). Results: French Chaga contains betulin and betulinic acid at higher levels than in other Chaga, whereas the concentration of inotodiol is greater in the Canadian Chaga. Moreover, the results highlighted a cytotoxic activity of the Chaga’s aqueous extract after 48 and 72 hours of exposure with a higher effect on cancer-derived cells A549 than on normal transformed cells BEAS-2B (P = 0.025 after 48 hours of exposure and P = 0.004 after 72 hours of exposure).
Triterpenes from Poria cocos suppress growth and invasiveness of pancreatic cancer cells through the downregulation of MMP-7
Poria cocos is a medicinal mushroom that is widely used in traditional Asian medicine. Here, we show that a characterized mixture of triterpenes extracted from P. cocos (PTE) and three purified triterpenes: pachymic acid (PA), dehydropachymic acid (DPA) and polyporenic acid C (PPAC) suppress the proliferation of the human pancreatic cancer cell lines Panc-1, MiaPaca-2, AsPc-1 and BxPc-3. Moreover, the most effective compound, PA, only slightly affects the proliferation of HPDE-6 normal pancreatic duct epithelial cells. The anti-proliferative effects of PTE on BxPc-3 cells are mediated by the cell cycle arrest at G0/G1 phase. DNA microarray analysis demonstrated that PTE significantly downregulates the expression of KRAS and matrix metalloproteinase-7 (MMP-7) in BxPc-3 cells. In addition, PTE and PA suppress the invasive behavior of BxPc-3 cells. The inhibition of invasiveness by PTE and PA was associated with the reduction of MMP-7 at the protein level and the role of MMP-7 further confirmed by the gene silencing of MMP-7 which also suppressed the invasiveness of BxPc-3 cells. In conclusion, triterpenes from P. cocos demonstrate anticancer and anti-invasive effects on human pancreatic cancer cells and can be considered as new therapeutic agents in the treatment of pancreatic cancer.
Pachymic Acid Inhibits Growth and Induces Apoptosis of Pancreatic Cancer In Vitro and In Vivo by Targeting ER Stress
Pachymic acid (PA) is a purified triterpene extracted from medicinal fungus Poria cocos. In this paper, we investigated the anticancer effect of PA on human chemotherapy resistant pancreatic cancer. PA triggered apoptosis in gemcitabine-resistant pancreatic cancer cells PANC-1 and MIA PaCa-2. Comparative gene expression array analysis demonstrated that endoplasmic reticulum (ER) stress was induced by PA through activation of heat shock response and unfolded protein response related genes. Induced ER stress was confirmed by increasing expression of XBP-1s, ATF4, Hsp70, CHOP and phospho-eIF2α. Moreover, ER stress inhibitor tauroursodeoxycholic acid (TUDCA) blocked PA induced apoptosis. In addition, 25 mg kg-1 of PA significantly suppressed MIA PaCa-2 tumor growth in vivo without toxicity, which correlated with induction of apoptosis and expression of ER stress related proteins in tumor tissues. Taken together, growth inhibition and induction of apoptosis by PA in gemcitabine-resistant pancreatic cancer cells were associated with ER stress activation both in vitro and in vivo. PA may be potentially exploited for the use in treatment of chemotherapy resistant pancreatic cancer.
Induction of apoptosis by an ethanol extract of Poria cocos Wolf. in human leukemia U937 cells
Poria cocos Wolf., which belongs to the Polyporaceae family, has been widely used as an Oriental traditional herbal medicine for centuries. Its sclerotium has been reported to possess a wide spectrum of pharmacological activities, including free-radical scavenging, anti-viral, anti-microbial, anti-inflammatory and anticancer activities. However, the cellular and molecular mechanisms of apoptosis induction by P. cocos in human cancer cells are poorly understood. In the present study, we investigated the pro-apoptotic potential of an ethanol extract of P. cocos sclerotium (EEPC) in human leukemia U937 cells in vitro. We found that EEPC induced anti-proliferative effects in U937 cells in a concentration- and time-dependent manner, which was due to apoptotic induction, as evident from morphological changes and flow cytometric assays. EEPC-induced apoptosis of U937 cells was associated with an increase in the Bax:Bcl-2 ratio, the release of cytochrome c to the cytosol, and a decrease in the expression of an inhibitor of the apoptosis family of proteins. The events were accompanied by activation of caspase-8, -9 and -3, and cleaved poly(ADP-ribose) polymerase, suggesting the involvement of both the intrinsic and extrinsic apoptotic cascades. In addition, the overexpression of Bcl-2 caused a significant attenuation of EEPC-induced caspase activation, degradation of PARP, and the collapse of mitochondrial membrane potential, and thereby reversed EEPC-induced cell apoptosis and growth inhibition. Collectively, these data provide insights into the molecular mechanisms underlying EEPC-induced apoptosis in U937 cells, suggesting that EEPC may be a new therapeutic option for the treatment of leukemia.