Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
213 result(s) for "Primaten"
Sort by:
Primates and Philosophers : How Morality Evolved
\"Can virtuous behavior be explained by nature, and not by human rational choice? In Primates and philosophers, renowned primatologist Frans de Waal explores the biological foundations of one of humanity's most cherished traits: morality. Drawing on Darwin, recent scientific advances, and his extensive research of primate behavior, de Waal argues that modern-day evolutionary biology incorrectly reinforces our habit of labeling ethical behavior as humane and the less civilized as animalistic. His compelling account of how human morality evolved out of mammalian society will fascinate anyone who has ever wondered about the origins and reach of human goodness.\"--Page 4 of cover.
Great apes anticipate that other individuals will act according to false beliefs
Humans operate with a \"theory of mind\" with which they are able to understand that others' actions are driven not by reality but by beliefs about reality, even when those beliefs are false. Although great apes share with humans many social-cognitive skills, they have repeatedly failed experimental tests of such false-belief understanding. We use an anticipatory looking test (originally developed for human infants) to show that three species of great apes reliably look in anticipation of an agent acting on a location where he falsely believes an object to be, even though the apes themselves know that the object is no longer there. Our results suggest that great apes also operate, at least on an implicit level, with an understanding of false beliefs.
Establishing an infrastructure for collaboration in primate cognition research
Inferring the evolutionary history of cognitive abilities requires large and diverse samples. However, such samples are often beyond the reach of individual researchers or institutions, and studies are often limited to small numbers of species. Consequently, methodological and site-specific-differences across studies can limit comparisons between species. Here we introduce the ManyPrimates project, which addresses these challenges by providing a large-scale collaborative framework for comparative studies in primate cognition. To demonstrate the viability of the project we conducted a case study of short-term memory. In this initial study, we were able to include 176 individuals from 12 primate species housed at 11 sites across Africa, Asia, North America and Europe. All subjects were tested in a delayed-response task using consistent methodology across sites. Individuals could access food rewards by remembering the position of the hidden reward after a 0, 15, or 30-second delay. Overall, individuals performed better with shorter delays, as predicted by previous studies. Phylogenetic analysis revealed a strong phylogenetic signal for short-term memory. Although, with only 12 species, the validity of this analysis is limited, our initial results demonstrate the feasibility of a large, collaborative open-science project. We present the ManyPrimates project as an exciting opportunity to address open questions in primate cognition and behaviour with large, diverse datasets.
The evolutionary origin of human hyper-cooperation
Proactive, that is, unsolicited, prosociality is a key component of our hyper-cooperation, which in turn has enabled the emergence of various uniquely human traits, including complex cognition, morality and cumulative culture and technology. However, the evolutionary foundation of the human prosocial sentiment remains poorly understood, largely because primate data from numerous, often incommensurable testing paradigms do not provide an adequate basis for formal tests of the various functional hypotheses. We therefore present the results of standardized prosociality experiments in 24 groups of 15 primate species, including humans. Extensive allomaternal care is by far the best predictor of interspecific variation in proactive prosociality. Proactive prosocial motivations therefore systematically arise whenever selection favours the evolution of cooperative breeding. Because the human data fit this general primate pattern, the adoption of cooperative breeding by our hominin ancestors also provides the most parsimonious explanation for the origin of human hyper-cooperation. The evolutionary foundation of human prosociality remains poorly understood. Here, the authors show that extensive allomaternal care is the best predictor of prosocial behaviour among 15 primate species, including humans, which suggests that prosocial motivations arise along with cooperative breeding.
evolution of self-control
Cognition presents evolutionary research with one of its greatest challenges. Cognitive evolution has been explained at the proximate level by shifts in absolute and relative brain volume and at the ultimate level by differences in social and dietary complexity. However, no study has integrated the experimental and phylogenetic approach at the scale required to rigorously test these explanations. Instead, previous research has largely relied on various measures of brain size as proxies for cognitive abilities. We experimentally evaluated these major evolutionary explanations by quantitatively comparing the cognitive performance of 567 individuals representing 36 species on two problem-solving tasks measuring self-control. Phylogenetic analysis revealed that absolute brain volume best predicted performance across species and accounted for considerably more variance than brain volume controlling for body mass. This result corroborates recent advances in evolutionary neurobiology and illustrates the cognitive consequences of cortical reorganization through increases in brain volume. Within primates, dietary breadth but not social group size was a strong predictor of species differences in self-control. Our results implicate robust evolutionary relationships between dietary breadth, absolute brain volume, and self-control. These findings provide a significant first step toward quantifying the primate cognitive phenome and explaining the process of cognitive evolution.
Imaging evolution of the primate brain: the next frontier?
•Comparing species can provide insights into the evolutionary history.•Comparative neuroimaging allow to access in vivo anatomy and cognition.•Access to more data across species will soon allow us to model the brains of common ancestors.•Comparative neuroimaging may help discover neuroprotective mechanisms. Evolution, as we currently understand it, strikes a delicate balance between animals' ancestral history and adaptations to their current niche. Similarities between species are generally considered inherited from a common ancestor whereas observed differences are considered as more recent evolution. Hence comparing species can provide insights into the evolutionary history. Comparative neuroimaging has recently emerged as a novel subdiscipline, which uses magnetic resonance imaging (MRI) to identify similarities and differences in brain structure and function across species. Whereas invasive histological and molecular techniques are superior in spatial resolution, they are laborious, post-mortem, and oftentimes limited to specific species. Neuroimaging, by comparison, has the advantages of being applicable across species and allows for fast, whole-brain, repeatable, and multi-modal measurements of the structure and function in living brains and post-mortem tissue. In this review, we summarise the current state of the art in comparative anatomy and function of the brain and gather together the main scientific questions to be explored in the future of the fascinating new field of brain evolution derived from comparative neuroimaging. [Display omitted]
Thirty years of great ape gestures
We and our colleagues have been doing studies of great ape gestural communication for more than 30 years. Here we attempt to spell out what we have learned. Some aspects of the process have been reliably established by multiple researchers, for example, its intentional structure and its sensitivity to the attentional state of the recipient. Other aspects are more controversial. We argue here that it is a mistake to assimilate great ape gestures to the species-typical displays of other mammals by claiming that they are fixed action patterns, as there are many differences, including the use of attention-getters. It is also a mistake, we argue, to assimilate great ape gestures to human gestures by claiming that they are used referentially and declaratively in a human-like manner, as apes’ “pointing” gesture has many limitations and they do not gesture iconically. Great ape gestures constitute a unique form of primate communication with their own unique qualities.
Great apes distinguish true from false beliefs in an interactive helping task
Understanding the behavior of others in a wide variety of circumstances requires an understanding of their psychological states. Humans' nearest primate relatives, the great apes, understand many psychological states of others, for example, perceptions, goals, and desires. However, so far there is little evidence that they possess the key marker of advanced human social cognition: an understanding of false beliefs. Here we demonstrate that in a nonverbal (implicit) false-belief test which is passed by human 1-year-old infants, great apes as a group, including chimpanzees (Pan troglodytes), bonobos (Pan paniscus), and orangutans (Pongo abelii), distinguish between true and false beliefs in their helping behavior. Great apes thus may possess at least some basic understanding that an agent's actions are based on her beliefs about reality. Hence, such understanding might not be the exclusive province of the human species.
Detailed mapping of the complex fiber structure and white matter pathways of the chimpanzee brain
Long-standing questions about human brain evolution may only be resolved through comparisons with close living evolutionary relatives, such as chimpanzees. This applies in particular to structural white matter (WM) connectivity, which continuously expanded throughout evolution. However, due to legal restrictions on chimpanzee research, neuroscience research currently relies largely on data with limited detail or on comparisons with evolutionarily distant monkeys. Here, we present a detailed magnetic resonance imaging resource to study structural WM connectivity in the chimpanzee. This open-access resource contains (1) WM reconstructions of a postmortem chimpanzee brain, using the highest-quality diffusion magnetic resonance imaging data yet acquired from great apes; (2) an optimized and validated method for high-quality fiber orientation reconstructions; and (3) major fiber tract segmentations for cross-species morphological comparisons. This dataset enabled us to identify phylogenetically relevant details of the chimpanzee connectome, and we anticipate that it will substantially contribute to understanding human brain evolution. This resource presents a high-resolution diffusion MRI dataset of a chimpanzee brain, which should be useful for evolutionary studies of primate brain evolution.