Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
182 result(s) for "Propionibacterium acnes - drug effects"
Sort by:
From pathogenesis of acne vulgaris to anti-acne agents
Acne vulgaris is a cutaneous chronic inflammatory disorder with complex pathogenesis. Four factors play vital roles in acne pathophysiology: hyperseborrhea and dysseborrhea, altered keratinization of the pilosebaceous duct, Cutibacterium acnes (C. acnes) and inflammation. The main hormones responsible for the development of acne vulgaris include androgens, insulin and insulin-like growth factor-1. Other factors involved in this process are corticotropin-releasing hormone, α-melanocyte-stimulating hormone and substance P. Wnt/β-catenin signaling pathway, phosphoinositide 3-kinase (PI3K)/Akt pathway, mitogen-activated protein kinase pathway, adenosine 5′-monophosphate-activated protein kinase pathway and nuclear factor kappa B pathway participate in the modulation of sebocyte, keratinocyte and inflammatory cell (e.g. lymphocytes, monocytes, macrophages, neutrophils) activity. Among all the triggers and pathways mentioned above, IGF-1-induced PI3K/Akt/Forkhead box protein O1/mammalian target of rapamycin (mTOR) C1 pathway is the most important signaling responsible for acne pathogenesis. Commonly used anti-acne agents include retinoids, benzoyl peroxide, antibiotics and hormonal agents (e.g. spironolactone, combination oral contraceptive and flutamide). New approaches including peroxisome proliferator-activated receptor γ modifier, melanocortin receptor antagonists, epigallocatechin-3-gallate, metformin, olumacostat glasaretil, stearoyl-CoA desaturase inhibitor omiganan pentahydrochloride, KDPT, afamelanotide, apremilast and biologics have been developed as promising treatments for acne vulgaris. Although these anti-acne agents have various pharmacological effects against the diverse pathogenesis of acne, all of them have a synergistic mode of action, the attenuation of Akt/mTORC1 signaling and enhancement of p53 signal transduction. In addition to drug therapy, diet with no hyperglycemic carbohydrates, no milk and dairy products is also beneficial for treatment of acne.
Staphylococcus epidermidis in the human skin microbiome mediates fermentation to inhibit the growth of Propionibacterium acnes: implications of probiotics in acne vulgaris
Increasing evidence demonstrates that commensal microorganisms in the human skin microbiome help fight pathogens and maintain homeostasis of the microbiome. However, it is unclear how these microorganisms maintain biological balance when one of them overgrows. The overgrowth of Propionibacterium acnes (P. acnes), a commensal skin bacterium, has been associated with the progression of acne vulgaris. Our results demonstrate that skin microorganisms can mediate fermentation of glycerol, which is naturally produced in skin, to enhance their inhibitory effects on P. acnes growth. The skin microorganisms, most of which have been identified as Staphylococcus epidermidis (S. epidermidis), in the microbiome of human fingerprints can ferment glycerol and create inhibition zones to repel a colony of overgrown P. acnes. Succinic acid, one of four short-chain fatty acids (SCFAs) detected in fermented media by nuclear magnetic resonance (NMR) analysis, effectively inhibits the growth of P. acnes in vitro and in vivo. Both intralesional injection and topical application of succinic acid to P. acnes-induced lesions markedly suppress the P. acnes-induced inflammation in mice. We demonstrate for the first time that bacterial members in the skin microbiome can undergo fermentation to rein in the overgrowth of P. acnes. The concept of bacterial interference between P. acnes and S. epidermidis via fermentation can be applied to develop probiotics against acne vulgaris and other skin diseases. In addition, it will open up an entirely new area of study for the biological function of the skin microbiome in promoting human health.
Antimicrobial and Anti-Inflammatory Activity of Chitosan–Alginate Nanoparticles: A Targeted Therapy for Cutaneous Pathogens
Advances in nanotechnology have demonstrated potential application of nanoparticles (NPs) for effective and targeted drug delivery. Here we investigated the antimicrobial and immunological properties and the feasibility of using NPs to deliver antimicrobial agents to treat a cutaneous pathogen. NPs synthesized with chitosan and alginate demonstrated a direct antimicrobial activity in vitro against Propionibacterium acnes, the bacterium linked to the pathogenesis of acne. By electron microscopy (EM) imaging, chitosan–alginate NPs were found to induce the disruption of the P. acnes cell membrane, providing a mechanism for the bactericidal effect. The chitosan–alginate NPs also exhibited anti-inflammatory properties as they inhibited P. acnes-induced inflammatory cytokine production in human monocytes and keratinocytes. Furthermore, benzoyl peroxide (BP), a commonly used antiacne drug, was effectively encapsulated in the chitosan–alginate NPs and demonstrated superior antimicrobial activity against P. acnes compared with BP alone while demonstrating less toxicity to eukaryotic cells. Together, these data suggest the potential utility of topical delivery of chitosan–alginate NP-encapsulated drug therapy for the treatment of dermatologic conditions with infectious and inflammatory components.
Systematic review of antibiotic resistance in acne: an increasing topical and oral threat
Topical and oral antibiotics are routinely used to treat acne. However, antibiotic resistance is increasing, with many countries reporting that more than 50% of Propionibacterium acnes strains are resistant to topical macrolides, making them less effective. We reviewed the current scientific literature to enable proposal of recommendations for antibiotic use in acne treatment. References were identified through PubMed searches for articles published from January, 1954, to March 7, 2015, using four multiword searches. Ideally, benzoyl peroxide in combination with a topical retinoid should be used instead of a topical antibiotic to minimise the impact of resistance. Oral antibiotics still have a role in the treatment of moderate-to-severe acne, but only with a topical retinoid, benzoyl peroxide, or their combination, and ideally for no longer than 3 months. To limit resistance, it is recommended that benzoyl peroxide should always be added when long-term oral antibiotic use is deemed necessary. The benefit-to-risk ratio of long-term antibiotic use should be carefully considered and, in particular, use alone avoided where possible. There is a need to treat acne with effective alternatives to antibiotics to reduce the likelihood of resistance.
A Precision Microbiome Approach Using Sucrose for Selective Augmentation of Staphylococcus epidermidis Fermentation against Propionibacterium acnes
Acne dysbiosis happens when there is a microbial imbalance of the over-growth of Propionibacterium acnes (P. acnes) in the acne microbiome. In our previous study, we demonstrated that Staphylococcus epidermidis (S. epidermidis, a probiotic skin bacterium) can exploit glycerol fermentation to produce short-chain fatty acids (SCFAs) which have antimicrobial activities to suppress the growth of P. acnes. Unlike glycerol, sucrose is chosen here as a selective fermentation initiator (SFI) that can specifically intensify the fermentation activity of S. epidermidis, but not P. acnes. A co-culture of P. acnes and fermenting S. epidermidis in the presence of sucrose significantly led to a reduction in the growth of P. acnes. The reduction was abolished when P. acnes was co-cultured with non-fermenting S. epidermidis. Results from nuclear magnetic resonance (NMR) analysis revealed four SCFAs (acetic acid, butyric acid, lactic acid, and succinic acid) were detectable in the media of S. epidermidis sucrose fermentation. To validate the interference of S. epidermidis sucrose fermentation with P. acnes, mouse ears were injected with both P. acnes and S. epidermidis plus sucrose or phosphate buffered saline (PBS). The level of macrophage-inflammatory protein-2 (MIP-2) and the number of P. acnes in ears injected with two bacteria plus sucrose were considerably lower than those in ears injected with two bacteria plus PBS. Our results demonstrate a precision microbiome approach by using sucrose as a SFI for S. epidermidis, holding future potential as a novel modality to equilibrate dysbiotic acne.
Target Proteins of Phloretin for Its Anti-Inflammatory and Antibacterial Activities Against Propionibacterium acnes-Induced Skin Infection
Phloretin is a natural chalcone with antibacterial and anti-inflammatory effects. This study investigated the anti-acne activity of phloretin against Propionibacterium acnes-induced skin infection and the potential target proteins of its anti-inflammatory and antibacterial effects. Phloretin potently inhibited the growth of P. acnes and P. acnes-induced Toll-like receptor (TLR) 2-mediated inflammatory signaling in human keratinocytes. Secreted embryonic alkaline phosphatase assay confirmed that the anti-inflammatory activity of phloretin is associated with the P. acnes-stimulated TLR2-mediated NF-κB signaling pathway. Phloretin significantly decreased the level of phosphorylated c-Jun N-terminal kinase (JNK), showing a binding affinity of 1.184 × 10−5 M−1. We also found that phloretin binds with micromolar affinity to P. acnes β-ketoacyl acyl carrier protein (ACP) synthase III (KAS III), an enzyme involved in fatty acid synthesis. Conformation-sensitive native polyacrylamide gel electrophoresis showed that phloretin reduced KAS III-mediated 3-ketoacyl ACP production by over 66%. A docking study revealed that phloretin interacts with the active sites of JNK1 and KAS III, suggesting their involvement in P. acnes-induced inflammation and their potential as targets for the antibacterial activity of phloretin. These results demonstrate that phloretin may be useful in the prevention or treatment of P. acnes infection.
In vitro Antimicrobial Activity of Acne Drugs Against Skin-Associated Bacteria
Acne is a common skin affliction that involves excess sebum production and modified lipid composition, duct blockage, colonization by bacteria, and inflammation. Acne drugs target one or more of these steps, with antibiotics commonly used to treat the microbial infection for moderate to severe cases. Whilst a number of other acne therapies are purported to possess antimicrobial activity, this has been poorly documented in many cases. We conducted a comparative analysis of the activity of common topical acne drugs against the principal etiological agent associated with acne: the aerotolerant anaerobic Gram-positive organism Propionibacterium acnes (recently renamed as Cutibacterium acnes ). We also assessed their impact on other bacteria that could also be affected by topical treatments, including both antibiotic-sensitive and antibiotic-resistant strains, using broth microdilution assay conditions. Drugs designated specifically as antibiotics had the greatest potency, but lost activity against resistant strains. The non-antibiotic acne agents did possess widespread antimicrobial activity, including against resistant strains, but at substantially higher concentrations. Hence, the antimicrobial activity of non-antibiotic acne agents may provide protection against a background of increased drug-resistant bacteria.
Origanum vulgare L. Essential Oil as a Potential Anti-Acne Topical Nanoemulsion—In Vitro and In Vivo Study
Antibiotics are often prescribed in acne treatment; however, Propionibacterium acnes and Staphylococcus epidermidis, the two of the major acne-associated bacteria, developed antibiotic resistance. Essential oils (EOs) present a natural, safe, efficacious and multifunctional alternative treatment. This study aimed to assess the potential anti-acne activity of selected seven EOs commonly used in Mediterranean folk medicine. Antimicrobial activity screening of these oils showed oregano to exhibit the strongest antimicrobial activity with minimum inhibitory concentration (MIC) of 0.34 mg/mL and minimum bactericidal concentration (MBC) of 0.67 mg/mL against P. acnes; and MIC of 0.67 mg/mL and MBC of 1.34 mg/mL against S. epidermidis. The composition of the most effective EOs (oregano and thyme) was determined using gas chromatography-mass spectrometry (GC-MS). Monoterpenoid phenols predominated oregano and thyme EO with thymol percentile 99 and 72, respectively. Thymol showed MIC 0.70 mg/mL against both P. acnes and S. epidermidis whereas MBC was 1.40 and 2.80 mg/mL against P. acnes and S. epidermidis, respectively. Moreover, oregano exhibited the strongest anti-biofilm effect against S. epidermidis with MBIC 1.34 mg/mL and killing dynamic time of 12 and 8 h against P. acnes and S. epidermidis, respectively. Oregano, the most effective EO, was formulated and tested as a nanoemulsion in an acne animal mouse model. The formulation showed superior healing and antimicrobial effects compared to the reference antibiotic. Collectively, our data suggested that oregano oil nanoemulsion is a potential natural and effective alternative for treating acne and overcoming the emerging antibiotic resistance.
Systemic Isotretinoin Therapy Normalizes Exaggerated TLR-2-Mediated Innate Immune Responses in Acne Patients
Retinoids are used in the treatment of inflammatory skin diseases and malignancies, but studies characterizing the in vivo actions of these drugs in humans are lacking. Isotretinoin is a pro-drug for all-trans retinoic acid, which can induce long-term remissions of acne; however, its complete mechanism of action is unknown. We hypothesized that isotretinoin induces remission of acne by normalizing the innate immune response to the commensal bacterium Propionibacterium acnes. Compared with normal subjects, peripheral blood monocytes from acne patients expressed significantly higher levels of Toll-like receptor 2 (TLR-2) and exhibited significantly greater induction of TLR-2 expression following P. acnes stimulation. Treatment of patients with isotretinoin significantly decreased monocyte TLR-2 expression and subsequent inflammatory cytokine response to P. acnes after 1 week of therapy. This effect was sustained 6 months following cessation of therapy, indicating that TLR-2 modulation may be involved in the durable therapeutic response to isotretinoin. This study demonstrates that isotretinoin exerts immunomodulatory effects in patients and sheds light on a potential mechanism for its long-term effects on acne. The modulation of TLR-2 expression on monocytes has important implications in other inflammatory disorders characterized by TLR-2 dysregulation.
Synergistic activity of dispersin B and benzoyl peroxide against Cutibacterium acnes/Staphylococcus epidermidis dual-species biofilms
Cutibacterium acnes plays a key role in the development of acne vulgaris, with biofilm formation contributing to its persistence and resistance to antimicrobial treatments. A critical component of C. acnes biofilms is poly- N -acetylglucosamine (PNAG), an exopolysaccharide that facilitates both biofilm stability and biocide resistance. This study evaluated the efficacy of the PNAG-degrading enzyme dispersin B in enhancing the susceptibility of C. acnes biofilms to benzoyl peroxide (BP), a common anti-acne agent. Dual-species biofilms of C. acnes and Staphylococcus epidermidis , which has been shown to promote C. acnes biofilm growth under aerobic conditions, were cultivated in glass tubes and treated with dispersin B (5–80 µg/mL), BP (0.1–2.5%), or a combination of both. Dispersin B or BP alone reduced C. acnes colony-forming units (CFUs) by 1–2 log units. However, sequential treatment with dispersin B followed by BP achieved a synergistic effect, yielding a >6-log reduction in CFUs. Remarkably, concentrations as low as 5 µg/mL dispersin B combined with 0.5% BP efficiently eradicated C. acnes from the dual-species biofilms. These findings highlight the protective role of PNAG against BP and demonstrate the potential of dispersin B as an adjunctive therapy to enhance the efficacy of BP in acne treatment.