Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
2,230 result(s) for "RNA tomography"
Sort by:
Single cell RNA-sequencing and RNA-tomography of the avian embryo extending body axis
Introduction: Vertebrate body axis formation initiates during gastrulation and continues within the tail bud at the posterior end of the embryo. Major structures in the trunk are paired somites, which generate the musculoskeletal system, the spinal cord—forming part of the central nervous system, and the notochord, with important patterning functions. The specification of these different cell lineages by key signalling pathways and transcription factors is essential, however, a global map of cell types and expressed genes in the avian trunk is missing. Methods: Here we use high-throughput sequencing approaches to generate a molecular map of the emerging trunk and tailbud in the chick embryo. Results and Discussion: Single cell RNA-sequencing (scRNA-seq) identifies discrete cell lineages including somites, neural tube, neural crest, lateral plate mesoderm, ectoderm, endothelial and blood progenitors. In addition, RNA-seq of sequential tissue sections (RNA-tomography) provides a spatially resolved, genome-wide expression dataset for the avian tailbud and emerging body, comparable to other model systems. Combining the single cell and RNA-tomography datasets, we identify spatially restricted genes, focusing on somites and early myoblasts. Thus, this high-resolution transcriptome map incorporating cell types in the embryonic trunk can expose molecular pathways involved in body axis development.
When Bigger Is Better: 3D RNA Profiling of the Developing Head in the Catshark Scyliorhinus canicula
We report the adaptation of RNA tomography, a technique allowing spatially resolved, genome-wide expression profiling, to a species occupying a key phylogenetic position in gnathostomes, the catshark Scyliorhinus canicula . We focused analysis on head explants at an embryonic stage, shortly following neural tube closure and of interest for a number of developmental processes, including early brain patterning, placode specification or the establishment of epithalamic asymmetry. As described in the zebrafish, we have sequenced RNAs extracted from serial sections along transverse, horizontal and sagittal planes, mapped the data onto a gene reference taking advantage of the high continuity genome recently released in the catshark, and projected read counts onto a digital model of the head obtained by confocal microscopy. This results in the generation of a genome-wide 3D atlas, containing expression data for most protein-coding genes in a digital model of the embryonic head. The digital profiles obtained for candidate forebrain regional markers along antero-posterior, dorso-ventral and left-right axes reproduce those obtained by in situ hybridization (ISH), with expected relative organizations. We also use spatial autocorrelation and correlation as measures to analyze these data and show that they provide adequate statistical tools to extract novel expression information from the model. These data and tools allow exhaustive searches of genes exhibiting any predefined expression characteristic, such a restriction to a territory of interest, thus providing a reference for comparative analyses across gnathostomes. This methodology appears best suited to species endowed with large embryo or organ sizes and opens novel perspectives to a wide range of evo-devo model organisms, traditionally counter-selected on size criterion.
Circular RNA CDR1as regulates osteoblastic differentiation of periodontal ligament stem cells via the miR-7/GDF5/SMAD and p38 MAPK signaling pathway
Background Periodontal ligament stem cells (PDLSCs) are considered as candidate cells for the regeneration of periodontal and alveolar bone tissues. Antisense to the cerebellar degeneration-related protein 1 transcript (CDR1as), which is a newly discovered circular RNA (circRNA), has been reported to act as an miR-7 sponge and to be involved in many biological processes. Here, we investigated the potential roles of CDR1as and miR-7 in the osteogenic differentiation of PDLSCs. Methods The expression pattern of CDR1as and miR-7 in PDLSCs during osteogenesis was detected by quantitative reverse-transcription polymerase chain reaction (qRT-PCR). Then we overexpressed or knocked down CDR1as or miR-7 to confirm whether they were involved in the regulation of osteoblast differentiation in PDLSCs. Alkaline phosphatase (ALP) and alizarin red S (ARS) staining were used to detect the activity of osteoblasts and mineral deposition. Furthermore, a dual luciferase reporter assay was conducted to analyze the binding of miR-7 to growth differentiation factor (GDF)5. To further verify the role of CDR1as in osteoblast differentiation, we conducted animal experiments in vivo. New bone formation in specimens was analyzed by microcomputed tomography (micro-CT), hematoxylin and eosin staining, and immunofluorescence staining. Results We observed that CDR1as was significantly upregulated during the osteogenic differentiation, whereas miR-7 was significantly downregulated. Moreover, knockdown of CDR1as and overexpression of miR-7 inhibited the ALP activity, ARS staining, and expression of osteogenic genes. Overexpression of miR-7 significantly reduced the activity of luciferase reporter vectors containing the wild-type, but not the mutant, 3’ untranslated region (UTR) sequence of GDF5. Furthermore, knockdown of GDF5 partially reversed the effects of miR-7 inhibitor on osteoblast differentiation. Downregulation of CDR1as or GDF5 subsequently inhibited phosphorylation of Smad1/5/8 and p38 mitogen-activated protein kinases (MAPK), while upregulation of miR-7 decreased the level of phosphorylated Smad1/5/8 and p38 MAPK. In vivo, CDR1as knockdown lead to less bone formation compared with the control group as revealed by micro-CT and the histological analysis. Conclusions Our results demonstrated that CDR1as acts as a miR-7 inhibitor, triggering the upregulation of GDF5 and subsequent Smad1/5/8 and p38 MAPK phosphorylation to promote osteogenic differentiation of PDLSCs. This study provides a novel understanding of the mechanisms of osteogenic differentiation, and suggests a potential method for promoting bone formation.
A unifying structural and functional model of the coronavirus replication organelle: Tracking down RNA synthesis
Zoonotic coronavirus (CoV) infections, such as those responsible for the current severe acute respiratory syndrome-CoV 2 (SARS-CoV-2) pandemic, cause grave international public health concern. In infected cells, the CoV RNA-synthesizing machinery associates with modified endoplasmic reticulum membranes that are transformed into the viral replication organelle (RO). Although double-membrane vesicles (DMVs) appear to be a pan-CoV RO element, studies to date describe an assortment of additional CoV-induced membrane structures. Despite much speculation, it remains unclear which RO element(s) accommodate viral RNA synthesis. Here we provide detailed 2D and 3D analyses of CoV ROs and show that diverse CoVs essentially induce the same membrane modifications, including the small open double-membrane spherules (DMSs) previously thought to be restricted to gamma- and delta-CoV infections and proposed as sites of replication. Metabolic labeling of newly synthesized viral RNA followed by quantitative electron microscopy (EM) autoradiography revealed abundant viral RNA synthesis associated with DMVs in cells infected with the beta-CoVs Middle East respiratory syndrome-CoV (MERS-CoV) and SARS-CoV and the gamma-CoV infectious bronchitis virus. RNA synthesis could not be linked to DMSs or any other cellular or virus-induced structure. Our results provide a unifying model of the CoV RO and clearly establish DMVs as the central hub for viral RNA synthesis and a potential drug target in CoV infection.
Persisting positron emission tomography lesion activity and Mycobacterium tuberculosis mRNA after tuberculosis cure
Stephanus Malherbe and colleagues conducted positron emission tomography–computerized tomography lung scans of patients before and after tuberculosis therapy and report that even in cured, culture-negative patients the majority show lung lesions after 6 months of therapy, suggesting possible persistence of Mycobacterium tuberculosis infection. The absence of a gold standard to determine when antibiotics induce a sterilizing cure has confounded the development of new approaches to treat pulmonary tuberculosis (PTB). We detected positron emission tomography and computerized tomography (PET–CT) imaging response patterns consistent with active disease, along with the presence of Mycobacterium tuberculosis (MTB) mRNA in sputum and bronchoalveolar lavage samples, in a substantial proportion of adult, HIV-negative patients with PTB after a standard 6-month treatment plus 1 year follow-up, including patients with a durable cure and others who later developed recurrent disease. The presence of MTB mRNA in the context of nonresolving and intensifying lesions on PET–CT images might indicate ongoing transcription, suggesting that even apparently curative treatment for PTB may not eradicate all of the MTB bacteria in most patients. This suggests an important complementary role for the immune response in maintaining a disease-free state. Sterilizing drugs or host-directed therapies, and better treatment response markers, are probably needed for the successful development of improved and shortened PTB-treatment strategies.
A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster
An ongoing outbreak of pneumonia associated with a novel coronavirus was reported in Wuhan city, Hubei province, China. Affected patients were geographically linked with a local wet market as a potential source. No data on person-to-person or nosocomial transmission have been published to date. In this study, we report the epidemiological, clinical, laboratory, radiological, and microbiological findings of five patients in a family cluster who presented with unexplained pneumonia after returning to Shenzhen, Guangdong province, China, after a visit to Wuhan, and an additional family member who did not travel to Wuhan. Phylogenetic analysis of genetic sequences from these patients were done. From Jan 10, 2020, we enrolled a family of six patients who travelled to Wuhan from Shenzhen between Dec 29, 2019 and Jan 4, 2020. Of six family members who travelled to Wuhan, five were identified as infected with the novel coronavirus. Additionally, one family member, who did not travel to Wuhan, became infected with the virus after several days of contact with four of the family members. None of the family members had contacts with Wuhan markets or animals, although two had visited a Wuhan hospital. Five family members (aged 36–66 years) presented with fever, upper or lower respiratory tract symptoms, or diarrhoea, or a combination of these 3–6 days after exposure. They presented to our hospital (The University of Hong Kong-Shenzhen Hospital, Shenzhen) 6–10 days after symptom onset. They and one asymptomatic child (aged 10 years) had radiological ground-glass lung opacities. Older patients (aged >60 years) had more systemic symptoms, extensive radiological ground-glass lung changes, lymphopenia, thrombocytopenia, and increased C-reactive protein and lactate dehydrogenase levels. The nasopharyngeal or throat swabs of these six patients were negative for known respiratory microbes by point-of-care multiplex RT-PCR, but five patients (four adults and the child) were RT-PCR positive for genes encoding the internal RNA-dependent RNA polymerase and surface Spike protein of this novel coronavirus, which were confirmed by Sanger sequencing. Phylogenetic analysis of these five patients' RT-PCR amplicons and two full genomes by next-generation sequencing showed that this is a novel coronavirus, which is closest to the bat severe acute respiatory syndrome (SARS)-related coronaviruses found in Chinese horseshoe bats. Our findings are consistent with person-to-person transmission of this novel coronavirus in hospital and family settings, and the reports of infected travellers in other geographical regions. The Shaw Foundation Hong Kong, Michael Seak-Kan Tong, Respiratory Viral Research Foundation Limited, Hui Ming, Hui Hoy and Chow Sin Lan Charity Fund Limited, Marina Man-Wai Lee, the Hong Kong Hainan Commercial Association South China Microbiology Research Fund, Sanming Project of Medicine (Shenzhen), and High Level-Hospital Program (Guangdong Health Commission).
F. nucleatum targets lncRNA ENO1-IT1 to promote glycolysis and oncogenesis in colorectal cancer
ObjectiveMicrobiota disorder promotes chronic inflammation and carcinogenesis. High glycolysis is associated with poor prognosis in patients with colorectal cancer (CRC). However, the potential correlation between the gut microbiota and glucose metabolism is unknown in CRC.Design 18F-FDG (18F-fluorodeoxyglucose) PET (positron emission tomography)/CT image scanning data and microbiota PCR analysis were performed to measure the correlation between metabolic alterations and microbiota disorder in 33 patients with CRC. Multiple colorectal cancer models, metabolic analysis and Seahorse assay were established to assess the role of long non-coding RNA (lncRNA) enolase1-intronic transcript 1 (ENO1-IT1) in Fusobacterium (F.) nucleatum-induced glucose metabolism and colorectal carcinogenesis. RNA immunoprecipitation and chromatin immunoprecipitation sequencing were conducted to identify potential targets of lncRNA ENO1-IT1.ResultsWe have found F. nucleatum abundance correlated with high glucose metabolism in patients with CRC. Furthermore, F. nucleatum supported carcinogenesis via increasing CRC cell glucose metabolism. Mechanistically, F. nucleatum activated lncRNA ENO1-IT1 transcription via upregulating the binding efficiency of transcription factor SP1 to the promoter region of lncRNA ENO1-IT1. Elevated ENO1-IT behaved as a guider modular for KAT7 histone acetyltransferase, specifying the histone modification pattern on its target genes, including ENO1, and consequently altering CRC biological function.Conclusion F. nucleatum and glucose metabolism are mechanistically, biologically and clinically connected to CRC. Targeting ENO1 pathway may be meaningful in treating patients with CRC with elevated F. nucleatum.
LINC01123, a c-Myc-activated long non-coding RNA, promotes proliferation and aerobic glycolysis of non-small cell lung cancer through miR-199a-5p/c-Myc axis
Background Long non-coding RNAs (lncRNAs) have been associated with non-small cell lung cancer (NSCLC), but the underlying molecular mechanisms of their specific roles in mediating aerobic glycolysis have been poorly explored. Methods Next-generation RNA sequencing assay was performed to identify the differentially expressed RNAs between NSCLC tissues with high 18 F-fluorodeoxyglucose (FDG) uptake and their adjacent normal lung tissues. LINC01123 expression in NSCLC tissues was measured by real-time PCR and in situ hybridization (ISH) assay. The biological role of LINC01123 in cell growth and aerobic glycolysis capability was determined by performing functional experiments in vitro and in vivo. Further, the transcription of LINC01123 was explored by bioinformatics analysis, dual-luciferase reporter assay, and chromatin immunoprecipitation (ChIP) assay. RNA immunoprecipitation (RIP) and luciferase analyses were used to confirm the predicted competitive endogenous RNA (ceRNA) mechanisms between LINC01123 and c-Myc. Results Three hundred sixty-four differentially expressed genes were identified in RNA-seq assay, and LINC01123 was one of the most overexpressed lncRNAs. Further validation in expanded NSCLC cohorts confirmed that LINC01123 was upregulated in 92 paired NSCLC tissues and associated with poor survival. Functional assays showed that LINC01123 promoted NSCLC cell proliferation and aerobic glycolysis. Mechanistic investigations revealed that LINC01123 was a direct transcriptional target of c-Myc. Meanwhile, LINC01123 increased c-Myc mRNA expression by sponging miR-199a-5p. In addition, rescue experiments showed that LINC01123 functioned as an oncogene depending on miR-199a-5p and c-Myc. Conclusion Since LINC01123 is upregulated in NSCLC, correlates with prognosis, and controls proliferation and aerobic glycolysis by a positive feedback loop with c-Myc, it is expected to be a potential biomarker and therapeutic target for NSCLC.
Zooming in and out: Exploring RNA Viral Infections with Multiscale Microscopic Methods
RNA viruses, being submicroscopic organisms, have intriguing biological makeups and substantially impact human health. Microscopic methods have been utilized for studying RNA viruses at a variety of scales. In order of observation scale from large to small, fluorescence microscopy, cryo-soft X-ray tomography (cryo-SXT), serial cryo-focused ion beam/scanning electron microscopy (cryo-FIB/SEM) volume imaging, cryo-electron tomography (cryo-ET), and cryo-electron microscopy (cryo-EM) single-particle analysis (SPA) have been employed, enabling researchers to explore the intricate world of RNA viruses, their ultrastructure, dynamics, and interactions with host cells. These methods evolve to be combined to achieve a wide resolution range from atomic to sub-nano resolutions, making correlative microscopy an emerging trend. The developments in microscopic methods provide multi-fold and spatial information, advancing our understanding of viral infections and providing critical tools for developing novel antiviral strategies and rapid responses to emerging viral threats.
Multifunctional Protein A Is the Only Viral Protein Required for Nodavirus RNA Replication Crown Formation
Positive-strand RNA virus RNA genome replication occurs in membrane-associated RNA replication complexes (RCs). Nodavirus RCs are outer mitochondrial membrane invaginations whose necked openings to the cytosol are “crowned” by a 12-fold symmetrical proteinaceous ring that functions as the main engine of RNA replication. Similar protein crowns recently visualized at the openings of alphavirus and coronavirus RCs highlight their broad conservation and functional importance. Using cryo-EM tomography, we earlier showed that the major nodavirus crown constituent is viral protein A, whose polymerase, RNA capping, membrane interaction and multimerization domains drive RC formation and function. Other viral proteins are strong candidates for unassigned EM density in the crown. RNA-binding RNAi inhibitor protein B2 co-immunoprecipitates with protein A and could form crown subdomains that protect nascent viral RNA and dsRNA templates. Capsid protein may interact with the crown since nodavirus virion assembly has spatial and other links to RNA replication. Using cryoelectron tomography and complementary approaches, we show that, even when formed in mammalian cells, nodavirus RC crowns generated without B2 and capsid proteins are functional and structurally indistinguishable from mature crowns in infected Drosophila cells expressing all viral proteins. Thus, the only nodaviral factors essential to form functional RCs and crowns are RNA replication protein A and an RNA template. We also resolve apparent conflicts in prior results on B2 localization in infected cells, revealing at least two distinguishable pools of B2. The results have significant implications for crown structure, assembly, function and control as an antiviral target.