Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
2,986
result(s) for
"Remote Sensing Technology - standards"
Sort by:
The SPOTLIGHT virtual audit tool: a valid and reliable tool to assess obesogenic characteristics of the built environment
by
Compernolle, Sofie
,
Glonti, Ketevan
,
Rutter, Harry R
in
Built environment
,
Environment Design - statistics & numerical data
,
Environmental aspects
2014
Background
A lack of physical activity and overconsumption of energy dense food is associated with overweight and obesity. The neighbourhood environment may stimulate or hinder the development and/or maintenance of a healthy lifestyle. To improve research on the obesogenicity of neighbourhood environments, reliable, valid and convenient assessment methods of potential obesogenic characteristics of neighbourhood environments are needed. This study examines the reliability and validity of the SPOTLIGHT-Virtual Audit Tool (S-VAT), which uses remote sensing techniques (Street View feature in Google Earth) for desk-based assessment of environmental obesogenicity.
Methods
A total of 128 street segments in four Dutch urban neighbourhoods – heterogeneous in socio-economic status and residential density – were assessed using the S-VAT. Environmental characteristics were categorised as walking related items, cycling related items, public transport, aesthetics, land use-mix, grocery stores, food outlets and physical activity facilities. To assess concordance of inter- and intra-observer reliability of the Street View feature in Google Earth, and validity scores with real life audits, percentage agreement and Cohen's Kappa (k) were calculated.
Results
Intra-observer reliability was high and ranged from 91.7% agreement (k = 0.654) to 100% agreement (k = 1.000) with an overall agreement of 96.4% (k = 0.848). Inter-observer reliability results ranged from substantial agreement 78.6% (k = 0.440) to high agreement, 99.2% (k = 0.579), with an overall agreement of 91.5% (k = 0.595). Criterion validity was substantial to high for most of the categories ranging from 87.3% agreement (k = 0.539) to 99.9% agreement (k = 0.887) with an overall score of 95.6% agreement (k = 0.747).
Conclusion
These study results suggest that the S-VAT is a highly reliable and valid remote sensing tool to assess potential obesogenic environmental characteristics.
Journal Article
Comparison of Unmanned Aerial Vehicle Technology Versus Standard Practice in Identification of Hazards at a Mass Casualty Incident Scenario by Primary Care Paramedic Students
by
Stryhn, Henrik
,
Jain, Trevor
,
Sibley, Aaron
in
Accidents, Traffic - mortality
,
Accidents, Traffic - statistics & numerical data
,
Aircraft accidents & safety
2018
IntroductionThe proliferation of unmanned aerial vehicles (UAV) has the potential to change the situational awareness of incident commanders allowing greater scene safety. The aim of this study was to compare UAV technology to standard practice (SP) in hazard identification during a simulated multi-vehicle motor collision (MVC) in terms of time to identification, accuracy and the order of hazard identification.
A prospective observational cohort study was conducted with 21 students randomized into UAV or SP group, based on a MVC with 7 hazards. The UAV group remained at the UAV ground station while the SP group approached the scene. After identifying hazards the time and order was recorded.
The mean time (SD, range) to identify the hazards were 3 minutes 41 seconds (1 minute 37 seconds, 1 minute 48 seconds-6 minutes 51 seconds) and 2 minutes 43 seconds (55 seconds, 1 minute 43 seconds-4 minutes 38 seconds) in UAV and SP groups corresponding to a mean difference of 58 seconds (P=0.11). A non-parametric permutation test showed a significant (P=0.04) difference in identification order.
Both groups had 100% accuracy in hazard identification with no statistical difference in time for hazard identification. A difference was found in the identification order of hazards. (Disaster Med Public Health Preparedness. 2018;12:631-634).
Journal Article
Convolutional Neural Networks enable efficient, accurate and fine-grained segmentation of plant species and communities from high-resolution UAV imagery
by
Kattenborn, Teja
,
Fassnacht, Fabian Ewald
,
Eichel, Jana
in
631/158/2178
,
631/158/670
,
631/158/853
2019
Recent technological advances in remote sensing sensors and platforms, such as high-resolution satellite imagers or unmanned aerial vehicles (UAV), facilitate the availability of fine-grained earth observation data. Such data reveal vegetation canopies in high spatial detail. Efficient methods are needed to fully harness this unpreceded source of information for vegetation mapping. Deep learning algorithms such as Convolutional Neural Networks (CNN) are currently paving new avenues in the field of image analysis and computer vision. Using multiple datasets, we test a CNN-based segmentation approach (U-net) in combination with training data directly derived from visual interpretation of UAV-based high-resolution RGB imagery for fine-grained mapping of vegetation species and communities. We demonstrate that this approach indeed accurately segments and maps vegetation species and communities (at least 84% accuracy). The fact that we only used RGB imagery suggests that plant identification at very high spatial resolutions is facilitated through spatial patterns rather than spectral information. Accordingly, the presented approach is compatible with low-cost UAV systems that are easy to operate and thus applicable to a wide range of users.
Journal Article
Medical cyber-physical systems: A survey
by
João Manuel R S Tavares
,
Ashour, Amira S
,
Dey, Nilanjan
in
Cyber-physical systems
,
Data management
,
Electronic devices
2018
Medical cyber-physical systems (MCPS) are healthcare critical integration of a network of medical devices. These systems are progressively used in hospitals to achieve a continuous high-quality healthcare. The MCPS design faces numerous challenges, including inoperability, security/privacy, and high assurance in the system software. In the current work, the infrastructure of the cyber-physical systems (CPS) are reviewed and discussed. This article enriched the researches of the networked Medical Device (MD) systems to increase the efficiency and safety of the healthcare. It also can assist the specialists of medical device to overcome crucial issues related to medical devices, and the challenges facing the design of the medical device’s network. The concept of the social networking and its security along with the concept of the wireless sensor networks (WSNs) are addressed. Afterward, the CPS systems and platforms have been established, where more focus was directed toward CPS-based healthcare. The big data framework of CPSs is also included.
Journal Article
Sensor-Based mHealth Authentication for Real-Time Remote Healthcare Monitoring System: A Multilayer Systematic Review
by
Zaidan, A A
,
Albahri, A S
,
Shuwandy, Moceheb Lazam
in
Architecture
,
Authentication
,
Health care
2019
The new and groundbreaking real-time remote healthcare monitoring system on sensor-based mobile health (mHealth) authentication in telemedicine has considerably bounded and dispersed communication components. mHealth, an attractive part in telemedicine architecture, plays an imperative role in patient security and privacy and adapts different sensing technologies through many built-in sensors. This study aims to improve sensor-based defence and attack mechanisms to ensure patient privacy in client side when using mHealth. Thus, a multilayer taxonomy was conducted to attain the goal of this study. Within the first layer, real-time remote monitoring studies based on sensor technology for telemedicine application were reviewed and analysed to examine these technologies and provide researchers with a clear vision of security- and privacy-based sensors in the telemedicine area. An extensive search was conducted to find articles about security and privacy issues, review related applications comprehensively and establish the coherent taxonomy of these articles. ScienceDirect, IEEE Xplore and Web of Science databases were investigated for articles on mHealth in telemedicine-based sensor. A total of 3064 papers were collected from 2007 to 2017. The retrieved articles were filtered according to the security and privacy of sensor-based telemedicine applications. A total of 19 articles were selected and classified into two categories. The first category, 57.89% (n = 11/19), included survey on telemedicine articles and their applications. The second category, 42.1% (n = 8/19), included articles contributed to the three-tiered architecture of telemedicine. The collected studies improved the essential need to add another taxonomy layer and review the sensor-based smartphone authentication studies. This map matching for both taxonomies was developed for this study to investigate sensor field comprehensively and gain access to novel risks and benefits of the mHealth security in telemedicine application. The literature on sensor-based smartphones in the second layer of our taxonomy was analysed and reviewed. A total of 599 papers were collected from 2007 to 2017. In this layer, we obtained a final set of 81 articles classified into three categories. The first category of the articles [86.41% (n = 70/81)], where sensor-based smartphones were examined by utilising orientation sensors for user authentication, was used. The second category [7.40% (n = 6/81)] included attack articles, which were not intensively included in our literature analysis. The third category [8.64% (n = 7/81)] included ‘other’ articles. Factors were considered to understand fully the various contextual aspects of the field in published studies. The characteristics included the motivation and challenges related to sensor-based authentication of smartphones encountered by researchers and the recommendations to strengthen this critical area of research. Finally, many studies on the sensor-based smartphone in the second layer have focused on enhancing accurate authentication because sensor-based smartphones require sensors that could authentically secure mHealth.
Journal Article
Real-Time Remote Health Monitoring Systems Using Body Sensor Information and Finger Vein Biometric Verification: A Multi-Layer Systematic Review
2018
The development of wireless body area sensor networks is imperative for modern telemedicine. However, attackers and cybercriminals are gradually becoming aware in attacking telemedicine systems, and the black market value of protected health information has the highest price nowadays. Security remains a formidable challenge to be resolved. Intelligent home environments make up one of the major application areas of pervasive computing. Security and privacy are the two most important issues in the remote monitoring and control of intelligent home environments for clients and servers in telemedicine architecture. The personal authentication approach that uses the finger vein pattern is a newly investigated biometric technique. This type of biometric has many advantages over other types (explained in detail later on) and is suitable for different human categories and ages. This study aims to establish a secure verification method for real-time monitoring systems to be used for the authentication of patients and other members who are working in telemedicine systems. The process begins with the sensor based on Tiers 1 and 2 (client side) in the telemedicine architecture and ends with patient verification in Tier 3 (server side) via finger vein biometric technology to ensure patient security on both sides. Multilayer taxonomy is conducted in this research to attain the study’s goal. In the first layer, real-time remote monitoring studies based on the sensor technology used in telemedicine applications are reviewed and analysed to provide researchers a clear vision of security and privacy based on sensors in telemedicine. An extensive search is conducted to identify articles that deal with security and privacy issues, related applications are reviewed comprehensively and a coherent taxonomy of these articles is established. ScienceDirect, IEEE Xplore and Web of Science databases are checked for articles on mHealth in telemedicine based on sensors. A total of 3064 papers are collected from 2007 to 2017. The retrieved articles are filtered according to the security and privacy of telemedicine applications based on sensors. Nineteen articles are selected and classified into two categories. The first category, which accounts for 57.89% (n = 11/19), includes surveys on telemedicine articles and their applications. The second category, accounting for 42.1% (n = 8/19), includes articles on the three-tiered architecture of telemedicine. The collected studies reveal the essential need to construct another taxonomy layer and review studies on finger vein biometric verification systems. This map-matching for both taxonomies is developed for this study to go deeply into the sensor field and determine novel risks and benefits for patient security and privacy on client and server sides in telemedicine applications. In the second layer of our taxonomy, the literature on finger vein biometric verification systems is analysed and reviewed. In this layer, we obtain a final set of 65 articles classified into four categories. In the first category, 80% (n = 52/65) of the articles focus on development and design. In the second category, 12.30% (n = 8/65) includes evaluation and comparative articles. These articles are not intensively included in our literature analysis. In the third category, 4.61% (n = 3/65) includes articles about analytical studies. In the fourth category, 3.07% (n = 2/65) comprises reviews and surveys. This study aims to provide researchers with an up-to-date overview of studies that have been conducted on (user/patient) authentication to enhance the security level in telemedicine or any information system. In the current study, taxonomy is presented by explaining previous studies. Moreover, this review highlights the motivations, challenges and recommendations related to finger vein biometric verification systems and determines the gaps in this research direction (protection of finger vein templates in real time), which represent a new research direction in this area.
Journal Article
Aerial surveys cause large but ephemeral decreases in bear presence at salmon streams in Kodiak, Alaska
by
Leacock, William B.
,
Deacy, William W.
,
Armstrong, Jonathan B.
in
Aerial surveys
,
Aircraft
,
Alaska
2019
Aerial surveys are often used to monitor wildlife and fish populations, but rarely are the effects on animal behavior documented. For over 30 years, the Kodiak National Wildlife Refuge has conducted low-altitude aerial surveys to assess Kodiak brown bear (Ursus arctos middendorffi) space use and demographic composition when bears are seasonally congregated near salmon spawning streams in southwestern Kodiak Island, Alaska. Salmon (Oncorhynchus spp.) are an important bear food and salmon runs are brief, so decreases in time spent fishing for salmon may reduce salmon consumption by bears. The goal of this study was to apply different and complementary field methods to evaluate the response of bears to these aerial surveys. Ground-based counts at one stream indicated 62% of bears departed the 200m-wide survey zone in response to aerial surveys, but bear counts returned to pre-survey abundance after only three hours. Although this effect was brief, survey flights occurred during the hours of peak daily bear activity (morning and evening), so the three-hour disruption appeared to result in a 25% decline in cumulative daily detections by 38 time-lapse cameras deployed along 10 salmon streams. Bear responses varied by sex-male bears were much more likely than female bears (with or without cubs) to depart streams and female bears with GPS collars did not move from streams following surveys. Although bears displaced by aerial surveys may consume fewer salmon, the actual effect on their fitness depends on whether they compensate by foraging at other times or by switching to other nutritious resources. Data from complementary sources allows managers to more robustly understand the impacts of surveys and whether their benefits are justified. Similar assessments should be made on alternative techniques such as Unmanned Aerial Vehicles and non-invasive sampling to determine whether they supply equivalent data while limiting bear disturbance.
Journal Article
Cyber Attacks on Healthcare Devices Using Unmanned Aerial Vehicles
by
Walczak, Steven
,
Vijayakumar, Vaidehi
,
Sethuraman, Sibi Chakkaravarthy
in
Cybersecurity
,
Enumeration
,
Health care
2020
The growing use of wireless technology in healthcare systems and devices makes these systems particularly open to cyber-based attacks, including denial of service and information theft via sniffing (eaves-dropping) and phishing attacks. Evolving technology enables wireless healthcare systems to communicate over longer ranges, which opens them up to greater numbers of possible threats. Unmanned aerial vehicles (UAV) or drones present a new and evolving attack surface for compromising wireless healthcare systems. An enumeration of the types of wireless attacks capable via drones are presented, including two new types of cyber threats: a stepping stone attack and a cloud-enabled attack. A real UAV is developed to test and demonstrate the vulnerabilities of healthcare systems to this new threat vector. The UAV successfully attacked a simulated smart hospital environment and also a small collection of wearable healthcare sensors. Compromise of wearable or implanted medical devices can lead to increased morbidity and mortality.
Journal Article
Improved individual and population-level HbA1c estimation using CGM data and patient characteristics
by
Crandell, Jamie L.
,
Maahs, David M.
,
Scheinker, David
in
Accuracy
,
Adolescent
,
Blood Glucose - analysis
2021
Machine learning and linear regression models using CGM and participant data reduced HbA1c estimation error by up to 26% compared to the GMI formula, and exhibit superior performance in estimating the median of HbA1c at the cohort level, potentially of value for remote clinical trials interrupted by COVID-19.
•HbA1c may be estimated using data from a continuous glucose monitor (CGM)•COVID-19 interrupted sample collection and increased the need for such estimates•The use of additional features and machine learning models produce more accurate estimates, as an alternative to HbA1c
Journal Article
A novel ε-sensitive correlation indistinguishable scheme for publishing location data
by
Bin, Wang
,
Lei, Zhang
,
Guoyin, Zhang
in
Access to Information
,
Algorithms
,
Applications programs
2019
Nowadays, location based service (LBS) is one of the most popular mobile apps and following with humongous of location data been produced. The publishing of location data can provide benefit for promoting the quality of service, optimizing the commercial environment as well as harmonizing the infrastructure construction. However, as location data may contain some sensitive or confidential information, the publishing may reveal privacy and bring hazards. So the published data had to be disposed to protect the privacy. In order to cope with this problem, a number of algorithms based on the strategy of k-anonymity were proposed, but this is not enough for the privacy protection, as the correlation between the sensitive region and the background knowledge can be used to infer the real location. Thus, consider about this condition, in this paper a ε-sensitive correlation privacy protection scheme is proposed, and provides correlation indistinguishable to the location data. In this scheme, entropy is first used to determine the location centroid of each cell to build up the voronoi diagram. Then the coordinate of the untreated location data that is located in the cell is transferred into the centroid vicinity. Accordingly, the sensitive correlation is destroyed by the coordinate of each published data. The process of transferring the location data is determined by metrics of ε-sensitive correlation privacy, and is rigorous in mathematical justification. At last, security analysis is proposed in this paper to verify the privacy ability of our proposed algorithm based on voronoi diagram and entropy, and then we utilize the comparative experiment to further affirm the advantage of this algorithm in the location data privacy protection as well as the availability of published data.
Journal Article