Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
2,516 result(s) for "Respiratory Tract Infections - pathology"
Sort by:
Distress during airway sampling in children with cystic fibrosis
BackgroundOropharyngeal suction and oropharyngeal swab are two methods of obtaining airway samples with similar diagnostic accuracy in children with cystic fibrosis (CF). The primary aim was comparing distress between suctioning and swabbing. A secondary aim was establishing the reliability of the Groningen Distress Rating Scale (GDRS).MethodsRandomised oropharyngeal suction or swab occurred over two visits. Two physiotherapists and the child’s parent rated distress using the GDRS. Heart rate (HR) was also measured.Results24 children with CF, mean age of 3 years, participated. Both physiotherapist and parent rating showed significantly higher distress levels during suction than swab. Inter-rater reliability for the GDRS was very good between physiotherapists, and good between physiotherapist and parents.ConclusionThe study found that oropharyngeal swab is less distressing in obtaining samples than oropharyngeal suction and that the GDRS was reliable and valid.
T(H)2-like chemokine patterns correlate with disease severity in patients with recurrent respiratory papillomatosis
Recurrent respiratory papillomatosis (RRP), characterized by the recurrent growth of benign tumors of the respiratory tract, is caused by infection with human papillomavirus (HPV), predominantly types 6 and 11. Surgical removal of these lesions can be required as frequently as every 3 to 4 wks to maintain a patent airway. There is no approved medical treatment for this disease. In this study, we have characterized the T(H)2-like chemokine profile (CCL17, CCL18, CCL20, CCL22) in patients with RRP and asked whether it was modulated in patients who had achieved significant clinical improvement. CCL17, CCL18 and CCL22 messenger RNAs (mRNAs) were increased in papillomas compared with clinically normal laryngeal epithelium of the RRP patients. Overall, CCL20 mRNA expression was not increased, but there was intense, selective CCL20 protein expression in the basal layer of the papillomas. Patients with RRP expressed more CCL17 (p = 0.003), CCL18 (p = 0.0003), and CCL22 (p = 0.007) in their plasma than controls. Plasma CCL18 decreased over time in three patients enrolled in a pilot clinical trial of celecoxib, and the decrease occurred in conjunction with clinical improvement. There was a significant correlation between sustained clinical remission in additional patients with RRP and reduced levels of CCL17 (p = 0.01), CCL22 (p = 0.002) and CCL18 (p = 0.05). Thus, the change in expression of these three plasma T(H)2-like chemokines may, with future studies, prove to serve as a useful biomarker for predicting disease prognosis.
Biapenem versus meropenem in the treatment of bacterial infections: a multicenter, randomized, controlled clinical trial
Biapenem is a newly developed carbapenem to treat moderate and severe bacterial infections. This multicenter, randomized, parallel-controlled clinical trial was conducted to compare the clinical efficacy, bacterial eradication rates and safety of biapenem and meropenem in the treatment of bacterial lower respiratory tract infections and urinary tract infections (UTIs) at nine centres in China. Patients diagnosed with bacterial lower respiratory tract infections or UTIs were randomly assigned to receive either biapenem (300 mg every 12 h) or meropenem (500 mg every 8 h) by intravenous infusion for 7 to 14 days according to their disease severity. The overall clinical efficacy, bacterial eradication rates and drug-related adverse reactions of biapenem and meropenem were analyzed. A total of 272 enrolled cases were included in the intent-to-treat (ITT) analysis and safety analysis. There were no differences in demographics and baseline medical characteristics between biapenem group and meropenem group. The overall clinical efficacies of biapenem and meropenem were not significantly different, 94.70 per cent (125/132) vs. 93.94 per cent (124/132). The overall bacterial eradication rates of biapenem and meropenem showed no significant difference, 96.39 per cent (80/83) vs. 93.75 per cent (75/80). Drug-related adverse reactions were comparable in biapenem and meropenem groups with the incidence of 11.76 per cent (16/136) and 15.44 per cent (21/136), respectively. The most common symptoms of biapenem-related adverse reactions were rash (2.2%) and gastrointestinal distress (1.5%). Biapenem was non-inferior to meropenem and was well-tolerated in the treatment of moderate and severe lower respiratory tract infections and UTIs.
Risks and features of secondary infections in severe and critical ill COVID-19 patients
Objectives Severe or critical COVID-19 is associated with intensive care unit admission, increased secondary infection rate, and would lead to significant worsened prognosis. Risks and characteristics relating to secondary infections in severe COVID-19 have not been described. Methods Severe and critical COVID-19 patients from Shanghai were included. We collected lower respiratory, urine, catheters, and blood samples according to clinical necessity and culture and mNGS were performed. Clinical and laboratory data were archived. Results We found 57.89% (22/38) patients developed secondary infections. The patient receiving invasive mechanical ventilation or in critical state has a higher chance of secondary infections (P<0.0001). The most common infections were respiratory, blood-stream and urinary infections, and in respiratory infections, the most detected pathogens were gram-negative bacteria (26, 50.00%), following by gram-positive bacteria (14, 26.92%), virus (6, 11.54%), fungi (4, 7.69%), and others (2, 3.85%). Respiratory Infection rate post high flow, tracheal intubation, and tracheotomy were 12.90% (4/31), 30.43% (7/23), and 92.31% (12/13) respectively. Secondary infections would lead to lower discharge rate and higher mortality rate. Conclusion Our study originally illustrated secondary infection proportion in severe and critical COVID-19 patients. Culture accompanied with metagenomics sequencing increased pathogen diagnostic rate. Secondary infections risks increased after receiving invasive respiratory ventilations and intravascular devices, and would lead to a lower discharge rate and a higher mortality rate.
Respiratory virus shedding in exhaled breath and efficacy of face masks
We identified seasonal human coronaviruses, influenza viruses and rhinoviruses in exhaled breath and coughs of children and adults with acute respiratory illness. Surgical face masks significantly reduced detection of influenza virus RNA in respiratory droplets and coronavirus RNA in aerosols, with a trend toward reduced detection of coronavirus RNA in respiratory droplets. Our results indicate that surgical face masks could prevent transmission of human coronaviruses and influenza viruses from symptomatic individuals. A study of 246 individuals with seasonal respiratory virus infections randomized to wear or not wear a surgical face mask showed that masks can significantly reduce detection of coronavirus and influenza virus in exhaled breath and may help interrupt virus transmission.
Phosphoinositide 3-Kinase δ Gene Mutation Predisposes to Respiratory Infection and Airway Damage
Genetic mutations cause primary immunodeficiencies (PIDs) that predispose to infections. Here, we describe activated PI3K-δ syndrome (APDS), a PID associated with a dominant gain-of-function mutation in which lysine replaced glutamk acid at residue 1021 (E1021K) in the p110δ protein, the catalytic subunit of phosphoinositide 3-kinase δ (PI3Kδ), encoded by the PIK3CD gene. We found E1021K in 17 patients from seven unrelated families, but not among 3346 healthy subjects. APDS was characterized by recurrent respiratory infections, progressive airway damage, lymphopenia, increased circulating transitional B cells, increased immunoglobulin M, and reduced immunoglobulin G2 levels in serum and impaired vaccine responses. The E1021K mutation enhanced membrane association and kinase activity of p110δ. Patient-derived lymphocytes had increased levels of phosphatidylinositol 3,4,5-trisphosphate and phosphorylated AKT protein and were prone to activation-induced cell death. Selective p110δ inhibitors IC87114 and GS-1101 reduced the activity of the mutant enzyme in vitro, which suggested a therapeutic approach for patients with APDS.
Clinical impact of monocyte distribution width and neutrophil-to-lymphocyte ratio for distinguishing COVID-19 and influenza from other upper respiratory tract infections: A pilot study
The coronavirus disease 2019 (COVID-19) has become a pandemic. Rapidly distinguishing COVID-19 from other respiratory infections is a challenge for first-line health care providers. This retrospective study was conducted at the Taipei Medical University Hospital, Taiwan. Patients who visited the outdoor epidemic prevention screening station for respiratory infection from February 19 to April 30, 2020, were evaluated for blood biomarkers to distinguish COVID-19 from other respiratory infections. Monocyte distribution width (MDW) ≥ 20 (odds ratio [OR]: 8.39, p = 0.0110, area under curve [AUC]: 0.703) and neutrophil-to-lymphocyte ratio (NLR) < 3.2 (OR: 4.23, p = 0.0494, AUC: 0.673) could independently distinguish COVID-19 from common upper respiratory tract infections (URIs). Combining MDW ≥ 20 and NLR < 3.2 was more efficient in identifying COVID-19 (AUC: 0.840). Moreover, MDW ≥ 20 and NLR > 5 effectively identified influenza infection (AUC: 0.7055). Thus, MDW and NLR can distinguish COVID-19 from influenza and URIs.
Neutrophil Dysfunction in the Airways of Children with Acute Respiratory Failure Due to Lower Respiratory Tract Viral and Bacterial Coinfections
Neutrophils are recruited to the airways of patients with acute respiratory distress syndrome (ARDS) where they acquire an activated pro-survival phenotype with an enhanced respiratory burst thought to contribute to ARDS pathophysiology. Our in vitro model enables blood neutrophil transepithelial migration into cell-free tracheal aspirate fluid from patients to recapitulate the primary airway neutrophil phenotype observed in vivo . Neutrophils transmigrated through our model toward airway fluid from children with lower respiratory viral infections coinfected with bacteria had elevated levels of neutrophil activation markers but paradoxically exhibited an inability to kill bacteria and a defective respiratory burst compared with children without bacterial coinfection. The airway fluid from children with bacterial coinfections had higher levels of neutrophil elastase activity, as well as myeloperoxidase levels compared to children without bacterial coinfection. Neutrophils transmigrated into the aspirate fluid from children with bacterial coinfection showed decreased respiratory burst and killing activity against H . influenzae and S . aureus compared to those transmigrated into the aspirate fluid from children without bacterial coinfection. Use of a novel transmigration model recapitulates this pathological phenotype in vitro that would otherwise be impossible in a patient, opening avenues for future mechanistic and therapeutic research.
Homozygous NLRP1 gain-of-function mutation in siblings with a syndromic form of recurrent respiratory papillomatosis
Juvenile-onset recurrent respiratory papillomatosis (JRRP) is a rare and debilitating childhood disease that presents with recurrent growth of papillomas in the upper airway. Two common human papillomaviruses (HPVs), HPV-6 and -11, are implicated in most cases, but it is still not understood why only a small proportion of children develop JRRP following exposure to these common viruses. We report 2 siblings with a syndromic form of JRRP associated with mild dermatologic abnormalities. Whole-exome sequencing of the patients revealed a private homozygous mutation in NLRP1, encoding Nucleotide-Binding Domain Leucine-Rich Repeat Family Pyrin Domain-Containing 1. We find the NLRP1 mutant allele to be gain of function (GOF) for inflammasome activation, as demonstrated by the induction of inflammasome complex oligomerization and IL-1β secretion in an overexpression system. Moreover, patient-derived keratinocytes secrete elevated levels of IL-1β at baseline. Finally, both patients displayed elevated levels of inflammasome-induced cytokines in the serum. Six NLRP1 GOF mutations have previously been described to underlie 3 allelic Mendelian diseases with differing phenotypes and modes of inheritance. Our results demonstrate that an autosomal recessive, syndromic form of JRRP can be associated with an NLRP1 GOF mutation.
Hydrogen Sulfide: A Novel Player in Airway Development, Pathophysiology of Respiratory Diseases, and Antiviral Defenses
Hydrogen sulfide (H S) is a biologically relevant signaling molecule in mammals. Along with the volatile substances nitric oxide (NO) and carbon monoxide (CO), H S is defined as a gasotransmitter. It plays a physiological role in a variety of functions, including synaptic transmission, vascular tone, angiogenesis, inflammation, and cellular signaling. The generation of H S is catalyzed by cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (3-MST). The expression of CBS and CSE is tissue specific, with CBS being expressed predominantly in the brain, and CSE in peripheral tissues, including lungs. CSE expression and activity are developmentally regulated, and recent studies suggest that CSE plays an important role in lung alveolarization during fetal development. In the respiratory tract, endogenous H S has been shown to participate in the regulation of important functions such as airway tone, pulmonary circulation, cell proliferation or apoptosis, fibrosis, oxidative stress, and inflammation. In the past few years, changes in the generation of H S have been linked to the pathogenesis of a variety of acute and chronic inflammatory lung diseases, including asthma and chronic obstructive pulmonary disease. Recently, our laboratory made the critical discovery that cellular H S exerts broad-spectrum antiviral activity both in vitro and in vivo, in addition to independent antiinflammatory activity. These findings have important implications for the development of novel therapeutic strategies for viral respiratory infections, as well as other inflammatory lung diseases, especially in light of recent significant efforts to generate controlled-release H S donors for clinical therapeutic applications.