Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
288
result(s) for
"Retinol-Binding Proteins, Plasma - metabolism"
Sort by:
Clinical, genetic and biochemical signatures of RBP4-related ocular malformations
by
Holt, Richard James
,
Whalen, Sandra
,
Ragge, Nicola
in
Acne
,
Anophthalmia
,
Anophthalmos - genetics
2024
BackgroundThe retinoic acid (RA) pathway plays a crucial role in both eye morphogenesis and the visual cycle. Individuals with monoallelic and biallelic pathogenic variants in retinol-binding protein 4 (RBP4), encoding a serum retinol-specific transporter, display variable ocular phenotypes. Although few families have been reported worldwide, recessive inherited variants appear to be associated with retinal degeneration, while individuals with dominantly inherited variants manifest ocular development anomalies, mainly microphthalmia, anophthalmia and coloboma (MAC).MethodsWe report here seven new families (13 patients) with isolated and syndromic MAC harbouring heterozygous RBP4 variants, of whom we performed biochemical analyses.ResultsFor the first time, malformations that overlap the clinical spectrum of vitamin A deficiency are reported, providing a link with other RA disorders. Our data support two distinct phenotypes, depending on the nature and mode of inheritance of the variants: dominantly inherited, almost exclusively missense, associated with ocular malformations, in contrast to recessive, mainly truncating, associated with retinal degeneration. Moreover, we also confirm the skewed inheritance and impact of maternal RBP4 genotypes on phenotypical expression in dominant forms, suggesting that maternal RBP4 genetic status and content of diet during pregnancy may modify MAC occurrence and severity. Furthermore, we demonstrate that retinol-binding protein blood dosage in patients could provide a biological signature crucial for classifying RBP4 variants. Finally, we propose a novel hypothesis to explain the mechanisms underlying the observed genotype–phenotype correlations in RBP4 mutational spectrum.ConclusionDominant missense variants in RBP4 are associated with MAC of incomplete penetrance with maternal inheritance through a likely dominant-negative mechanism.
Journal Article
Disturbed Vitamin A Metabolism in Non-Alcoholic Fatty Liver Disease (NAFLD)
by
Blokzijl, Hans
,
Schreuder, Tim
,
Faber, Klaas
in
adipose tissue
,
Adipose Tissue - metabolism
,
Adipose Tissue - pathology
2017
Vitamin A is required for important physiological processes, including embryogenesis, vision, cell proliferation and differentiation, immune regulation, and glucose and lipid metabolism. Many of vitamin A’s functions are executed through retinoic acids that activate transcriptional networks controlled by retinoic acid receptors (RARs) and retinoid X receptors (RXRs).The liver plays a central role in vitamin A metabolism: (1) it produces bile supporting efficient intestinal absorption of fat-soluble nutrients like vitamin A; (2) it produces retinol binding protein 4 (RBP4) that distributes vitamin A, as retinol, to peripheral tissues; and (3) it harbors the largest body supply of vitamin A, mostly as retinyl esters, in hepatic stellate cells (HSCs). In times of inadequate dietary intake, the liver maintains stable circulating retinol levels of approximately 2 μmol/L, sufficient to provide the body with this vitamin for months. Liver diseases, in particular those leading to fibrosis and cirrhosis, are associated with impaired vitamin A homeostasis and may lead to vitamin A deficiency. Liver injury triggers HSCs to transdifferentiate to myofibroblasts that produce excessive amounts of extracellular matrix, leading to fibrosis. HSCs lose the retinyl ester stores in this process, ultimately leading to vitamin A deficiency. Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of metabolic syndrome and is a spectrum of conditions ranging from benign hepatic steatosis to non-alcoholic steatohepatitis (NASH); it may progress to cirrhosis and liver cancer. NASH is projected to be the main cause of liver failure in the near future. Retinoic acids are key regulators of glucose and lipid metabolism in the liver and adipose tissue, but it is unknown whether impaired vitamin A homeostasis contributes to or suppresses the development of NAFLD. A genetic variant of patatin-like phospholipase domain-containing 3 (PNPLA3-I148M) is the most prominent heritable factor associated with NAFLD. Interestingly, PNPLA3 harbors retinyl ester hydrolase activity and PNPLA3-I148M is associated with low serum retinol level, but enhanced retinyl esters in the liver of NAFLD patients. Low circulating retinol in NAFLD may therefore not reflect true “vitamin A deficiency”, but rather disturbed vitamin A metabolism. Here, we summarize current knowledge about vitamin A metabolism in NAFLD and its putative role in the progression of liver disease, as well as the therapeutic potential of vitamin A metabolites.
Journal Article
Retinol binding protein 4 enhances cellular cholesterol uptake to facilitate influenza A virus infection
by
Zhang, Yalu
,
Liu, Wenjun
,
Shang, Yingli
in
Animals
,
CD36 Antigens - genetics
,
CD36 Antigens - metabolism
2025
Viruses hijack host cell machinery to facilitate their own replication. Therefore, identifying key cellular factors and processes involved in viral infection is crucial for developing host-directed therapies. Herein, we demonstrate that retinol-binding protein 4 (RBP4), a lipocalin family member and major retinol carrier, is significantly induced by influenza A virus (IAV) infection in both cellular models and clinical patients. Moreover, RBP4 deficiency impairs IAV replication both in vitro and in vivo . Mechanistically, RBP4 promotes the expression of CD36, a cholesterol uptake receptor protein, thereby increasing cellular cholesterol levels. This elevation in cholesterol subsequently boosts cell-surface sialic acid levels, facilitating IAV attachment. Consequently, enforced expression of CD36 restores IAV replication in RBP4-deficient cells and mice. In summary, our study identifies RBP4 as a pivotal host factor that facilitates IAV infection by modulating cellular cholesterol homeostasis.
Journal Article
Retinol binding protein 4 primes the NLRP3 inflammasome by signaling through Toll-like receptors 2 and 4
by
Aryal, Pratik
,
Norseen, Julie
,
Sontheimer-Phelps, Alexandra
in
3T3-L1 Cells
,
Adipocytes
,
Adipocytes - metabolism
2020
Adipose tissue (AT) inflammation contributes to systemic insulin resistance. In obesity and type 2 diabetes (T2D), retinol binding protein 4 (RBP4), the major retinol carrier in serum, is elevated in AT and has proinflammatory effects which are mediated partially through Toll-like receptor 4 (TLR4). We now show that RBP4 primes the NLRP3 inflammasome for interleukin-1β (IL1β) release, in a glucose-dependent manner, through the TLR4/MD2 receptor complex and TLR2. This impairs insulin signaling in adipocytes. IL1β is elevated in perigonadal white AT (PGWAT) of chow-fed RBP4-overexpressing mice and in serum and PGWAT of high-fat diet-fed RBP4-overexpressing mice vs. wild-type mice. Holo- or apo-RBP4 injection in wild-type mice causes insulin resistance and elevates PGWAT inflammatory markers, including IL1β. TLR4 inhibition in RBP4-overexpressing mice reduces PGWAT inflammation, including IL1β levels and improves insulin sensitivity. Thus, the proinflammatory effects of RBP4 require NLRP3-inflammasome priming. These studies may provide approaches to reduce AT inflammation and insulin resistance in obesity and diabetes.
Journal Article
Integration of signals from different cortical areas in higher order thalamic neurons
by
Kasthuri, Narayanan
,
Miller-Hansen, Andrew
,
Sampathkumar, Vandana
in
Animals
,
Ascorbate Peroxidases - metabolism
,
Biological Sciences
2021
Higher order thalamic neurons receive driving inputs from cortical layer 5 and project back to the cortex, reflecting a transthalamic route for corticocortical communication. To determine whether or not individual neurons integrate signals from different cortical populations, we combined electron microscopy “connectomics” in mice with genetic labeling to disambiguate layer 5 synapses from somato-sensory and motor cortices to the higher order thalamic posterior medial nucleus. A significant convergence of these inputs was found on 19 of 33 reconstructed thalamic cells, and as a population, the layer 5 synapses were larger and located more proximally on dendrites than were unlabeled synapses. Thus, many or most of these thalamic neurons do not simply relay afferent information but instead integrate signals as disparate in this case as those emanating from sensory and motor cortices. These findings add further depth and complexity to the role of the higher order thalamus in overall cortical functioning.
Journal Article
Retinol-binding protein type 1 expression predicts poor prognosis in head and neck squamous cell carcinoma
2024
Background
Head and neck squamous cell carcinoma (HNSCC) is the sixth most prevalent malignancy worldwide, with high incidence and poor survival rates. RBP1 is highly expressed in several kinds of cancer and plays a potential prognostic factor. However, the relationship between RBP1 and HNSCC were analyzed based on The Cancer Genome Atlas (TCGA) database.
Materials and methods
RBP1 expression and clinical information were obtained from the Cancer Genome Atlas (TCGA) database. Tumor tissue and adjacent normal tissue of 6 HNSCC patients were collected to analyze the RBP1 mRNA expression level by quantitative PCR. Cox regression analysis was used to evaluate the prognostic values of RBP1 and clinical data in HNSCC. A nomogram was also established to predict the impact of RBP1 on prognosis based on Cox multivariate results. The methylation level of RBP1 in HNSC and its prognosis were analyzed in UALACN and MethSurv. Finally, the potential biological functions of RBP1 were investigated using gene set enrichment analysis (GSEA) and single sample GSEA (ssGSEA).
Results
The mRNA expression levels of RBP1 were highly expressed in HNSCC tissue. The Cox analyses demonstrate that highly-expressed RBP1 is an independent prognosis marker(
P
< 0.05). ROC curve analysis showed that performances of RBP1 (area under the ROC curve: 0.887, sensitivity: 84.1%, specificity: 79.9%). The methylation was increased in HNSCC patients compared with normal subjects(
P
< 0.05) and was associated with better prognosis at sites cg06208339, cg12298268, cg12497564, cg15288618, cg20532370, cg23448348. Additionally, RBP1 expression is mildly associated with immune cell infiltration and immunological checkpoints.
Conclusion
RBP1 is overexpressed and associated with poor patient prognosis in head and neck squamous cell carcinoma.
Journal Article
Regulatory mechanism for the transmembrane receptor that mediates bidirectional vitamin A transport
by
Kawaguchi, Riki
,
Ribalet, Bernard
,
Hu, Jane
in
Animals
,
Apoproteins - genetics
,
Apoproteins - metabolism
2020
Vitamin A has diverse biological functions and is essential for human survival at every point from embryogenesis to adulthood. Vitamin A and its derivatives have been used to treat human diseases including vision diseases, skin diseases, and cancer. Both insufficient and excessive vitamin A uptake are detrimental, but how its transport is regulated is poorly understood. STRA6 is a multitransmembrane domain cell-surface receptor and mediates vitamin A uptake from plasma retinol binding protein (RBP). STRA6 can mediate both cellular vitamin A influx and efflux, but what regulates these opposing activities is unknown. To answer this question, we purified and identified STRA6-associated proteins in a native mammalian cell type that takes up vitamin A through STRA6 using mass spectrometry. We found that the major protein repeatedly identified as STRA6-associated protein is calmodulin, consistent with the cryogenic electron microscopy (cryo-EM) study of zebrafish STRA6 associated with calmodulin. Using radioactivity-based, high-performance liquid chromatography (HPLC)-based and real-time fluorescence techniques, we found that calmodulin profoundly affects STRA6’s vitamin A transport activity. Increased calcium/calmodulin promotes cellular vitamin A efflux and suppresses vitamin A influx through STRA6. Further mechanistic studies revealed that calmodulin enhances the binding of apo-RBP to STRA6, and this enhancement is much more pronounced for apo-RBP than holo-RBP. This study revealed that calmodulin regulates STRA6’s vitamin A influx or efflux activity by modulating its preferential interaction with apo-RBP or holo-RBP. This molecular mechanism of regulating vitamin A transport may point to new directions to treat human diseases associated with insufficient or excessive vitamin A uptake.
Journal Article
Large Benefit from Simple Things: High-Dose Vitamin A Improves RBP4-Related Retinal Dystrophy
2022
Inherited retinal diseases (IRD) are a group of heterogeneous disorders, most of which lead to blindness with limited therapeutic options. Pathogenic variants in RBP4, coding for a major blood carrier of retinol, retinol-binding protein 4, are responsible for a peculiar form of IRD. The aim of this study was to investigate if retinal function of an RBP4-related IRD patient can be improved by retinol administration. Our patient presented a peculiar white-dot retinopathy, reminiscent of vitamin A deficient retinopathy. Using a customized next generation sequencing (NGS) IRD panel we discovered a novel loss-of-function homozygous pathogenic variant in RBP4: c.255G >A, p.(Trp85*). Western blotting revealed the absence of RBP4 protein in the patient’s serum. Blood retinol levels were undetectable. The patient was put on a high-dose oral retinol regimen (50,000 UI twice a week). Subjective symptoms and retinal function markedly and sustainably improved at 5-months and 1-year follow-up. Here we show that this novel IRD case can be treated by oral retinol administration.
Journal Article
Increased Expression of Retinol-Binding Protein 4 in Ovarian Endometrioma and Its Possible Role in the Pathogenesis of Endometriosis
by
Kim, Ju Hee
,
Lee, Jae Chul
,
Chae, Hee Dong
in
Biomarkers
,
Cell Survival
,
Disease Susceptibility
2021
Although endometriosis is a benign disease characterized by the presence of endometrial tissues outside the uterus, ectopic endometrial cells can exhibit malignant biological behaviors. Retinol-binding protein4 (RBP4) is a novel adipocyte-derived cytokine, which has important roles in regulating insulin sensitivity and energy metabolism. RBP4 is a potent modulator of gene transcription, and acts by directly controlling cell growth, invasiveness, proliferation and differentiation. Here, we evaluated the possible role of RBP4 in the pathogenesis of endometriosis. We compared the levels of RBP4 in the tissues and peritoneal fluid (PF) of women with and without endometriosis and evaluated the in vitro effects of RBP4 on the viability, invasiveness, and proliferation of endometrial stromal cells (ESCs). RBP4 levels were significantly higher in the PF of the women in the endometriosis group than in the controls. RBP4 immunoreactivity was significantly higher in the ovarian endometriomas of women with advanced stage endometriosis than those of controls. In vitro treatment with human recombinant-RBP4 significantly increased the viability, bromodeoxyuridine expression, and invasiveness of ESCs. Transfection with RBP4 siRNA significantly reduced ESC viability and invasiveness. These findings suggest that RBP4 partakes in the pathogenesis of endometriosis by increasing the viability, proliferation and invasion of endometrial cells.
Journal Article
Down-regulation of RBP4 indicates a poor prognosis and correlates with immune cell infiltration in hepatocellular carcinoma
2021
Recent research has indicated that metabolically related genes play crucial roles in the pathogenesis of hepatocellular carcinoma (HCC). We evaluated the associations between novel biomarkers and retinol-binding protein 4 (RBP4) for predicting clinical HCC outcomes, hub-related genes, pathway regulation, and immune cells infiltration. Bioinformatic analyses based on data from The Cancer Genome Atlas were performed using online analysis tools. RBP4 expression was low in HCC and was also down-regulated in pan-cancers compared with normal tissues. RBP4 expression was also significantly different based on age (41–60 years old versus 61–80 years old), and low RBP4 expression levels were associated with advanced tumor stages and grades. Higher RBP4 expression was associated with better overall survival time in HCC patients, and we identified a deletion-mutation rate of 1.4% in RBP4. We also identified ten co-expressed genes most related to RBP4 and explored the relationships between six hub genes (APOB, FGA, FGG, SERPINC1, APOA1, and F2) involved in RBP4 regulation. A pathway enrichment analysis for RBP4 indicated complement and coagulation cascades, metabolic pathways, antibiotic biosynthesis pathways, peroxisome proliferator-activated receptor signaling pathways, and pyruvate metabolism pathways. These results suggest that RBP4 may be a novel biomarker for HCC prognosis, and an indicator of low immune response to the disease.
Journal Article