Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
63
result(s) for
"Rous sarcoma virus - physiology"
Sort by:
Subversion of the actin cytoskeleton during viral infection
by
Taylor, Matthew P.
,
Koyuncu, Orkide O.
,
Enquist, Lynn W.
in
631/326/22/1295
,
631/326/596/2557
,
631/80/128/1276
2011
Key Points
Actin is a ubiquitous cellular protein that forms a foundation for cellular structure and integrity. Viruses are obligate intracellular parasites with a replication cycle that requires them to engage and modify the actin cytoskeleton at all stages, from entry through replication to egress and spread.
Oncogenic proteins of transforming viruses interfere with the RHO-family GTPases (actin-signalling molecules) to change cellular dynamics from a quiescent to a mitotic state. The actin cytoskeleton is altered dramatically, cell shape changes, and cell-to-cell contact and matrix adhesion are lost, while podosomes and membrane ruffles appear on the cell surface.
Virus-mediated oncogenic transformation can result in metastatic tumours in humans, such as nasopharyngeal, hepatocellular and cervical carcinomas (induced by Epstein–Barr virus, hepatitis B virus and human papillomavirus, respectively). In vitro, viral proteins increase cell migration by disrupting and modulating actin dynamics. The host proteins involved in these interactions may be specific cytoskeletal targets for antimetastatic therapies.
Virions often interact with the underlying actin cytoskeleton to gain entry to the cell. Virions may move to entry sites using high-affinity interactions with receptors that are associated with actin filaments inside the cell. Movement is promoted by myosin motors that drive the actin cytoskeleton, pulling the receptor–virion complex across the plasma membrane. Virion entry by endocytic processes or formation of the fusion pore also often involves cortical actin.
Actin structures can be modified during viral infection to produce long cellular extensions (for example, filopodia and tunnelling nanotubes). These structures facilitate the long-distance dissemination of a wide range of viruses, including vaccinia virus, herpes simplex viruses, HIV and rotaviruses.
Most actin–virus interactions have been discovered in isolated or cultured cell systems. The next generation of research will apply this knowledge to viral infections in vivo to understand the role of viral subversion of the actin cytoskeleton in disease.
Manipulation of the host cell actin cytoskeleton is a common feature for many viruses. In this Review, Taylor, Koyuncu and Enquist describe how the interaction of viral proteins with the actin cytoskeleton alters the structure and function of this cytoskeleton, allowing viral infections to initiate, persist and spread.
Viral infection converts the normal functions of a cell to optimize viral replication and virion production. One striking observation of this conversion is the reconfiguration and reorganization of cellular actin, affecting every stage of the viral life cycle, from entry through assembly to egress. The extent and degree of cytoskeletal reorganization varies among different viral infections, suggesting the evolution of myriad viral strategies. In this Review, we describe how the interaction of viral proteins with the cell modulates the structure and function of the actin cytoskeleton to initiate, sustain and spread infections. The molecular biology of such interactions continues to engage virologists in their quest to understand viral replication and informs cell biologists about the role of the cytoskeleton in the uninfected cell.
Journal Article
Structure of the mature Rous sarcoma virus lattice reveals a role for IP6 in the formation of the capsid hexamer
2021
Inositol hexakisphosphate (IP6) is an assembly cofactor for HIV-1. We report here that IP6 is also used for assembly of Rous sarcoma virus (RSV), a retrovirus from a different genus. IP6 is ~100-fold more potent at promoting RSV mature capsid protein (CA) assembly than observed for HIV-1 and removal of IP6 in cells reduces infectivity by 100-fold. Here, visualized by cryo-electron tomography and subtomogram averaging, mature capsid-like particles show an IP6-like density in the CA hexamer, coordinated by rings of six lysines and six arginines. Phosphate and IP6 have opposing effects on CA in vitro assembly, inducing formation of T = 1 icosahedrons and tubes, respectively, implying that phosphate promotes pentamer and IP6 hexamer formation. Subtomogram averaging and classification optimized for analysis of pleomorphic retrovirus particles reveal that the heterogeneity of mature RSV CA polyhedrons results from an unexpected, intrinsic CA hexamer flexibility. In contrast, the CA pentamer forms rigid units organizing the local architecture. These different features of hexamers and pentamers determine the structural mechanism to form CA polyhedrons of variable shape in mature RSV particles.
Inositol hexakisphosphate (IP6) is a known assembly cofactor for HIV-1. Here, the authors show the role of IP6 in the assembly of the Rous sarcoma virus (RSV). Reported cryo-ET structures of mature capsid-like particles (CLPs) suggest that IP6 modulates the formation of capsid polyhedrons of variable shape.
Journal Article
Comparative analysis of retroviral Gag-host cell interactions: focus on the nuclear interactome
by
Rice, Breanna L.
,
Lambert, Gregory S.
,
Chang, Jordan
in
Antibodies
,
Biomedical and Life Sciences
,
Biomedicine
2024
Retroviruses exploit host proteins to assemble and release virions from infected cells. Previously, most studies focused on interacting partners of retroviral Gag proteins that localize to the cytoplasm or plasma membrane. Given that several full-length Gag proteins have been found in the nucleus, identifying the Gag-nuclear interactome has high potential for novel findings involving previously unknown host processes. Here we systematically compared nuclear factors identified in published HIV-1 proteomic studies and performed our own mass spectrometry analysis using affinity-tagged HIV-1 and RSV Gag proteins mixed with nuclear extracts. We identified 57 nuclear proteins in common between HIV-1 and RSV Gag, and a set of nuclear proteins present in our analysis and ≥ 1 of the published HIV-1 datasets. Many proteins were associated with nuclear processes which could have functional consequences for viral replication, including transcription initiation/elongation/termination, RNA processing, splicing, and chromatin remodeling. Examples include facilitating chromatin remodeling to expose the integrated provirus, promoting expression of viral genes, repressing the transcription of antagonistic cellular genes, preventing splicing of viral RNA, altering splicing of cellular RNAs, or influencing viral or host RNA folding or RNA nuclear export. Many proteins in our pulldowns common to RSV and HIV-1 Gag are critical for transcription, including PolR2B, the second largest subunit of RNA polymerase II (RNAPII), and LEO1, a PAF1C complex member that regulates transcriptional elongation, supporting the possibility that Gag influences the host transcription profile to aid the virus. Through the interaction of RSV and HIV-1 Gag with splicing-related proteins CBLL1, HNRNPH3, TRA2B, PTBP1 and U2AF1, we speculate that Gag could enhance unspliced viral RNA production for translation and packaging. To validate one putative hit, we demonstrated an interaction of RSV Gag with Mediator complex member Med26, required for RNA polymerase II-mediated transcription. Although 57 host proteins interacted with both Gag proteins, unique host proteins belonging to each interactome dataset were identified. These results provide a strong premise for future functional studies to investigate roles for these nuclear host factors that may have shared functions in the biology of both retroviruses, as well as functions specific to RSV and HIV-1, given their distinctive hosts and molecular pathology.
Graphical Abstract
Journal Article
Role of the Psi Packaging Signal and Dimerization Initiation Sequence in the Organization of Rous Sarcoma Virus Gag-gRNA Co-Condensates
by
Parent, Leslie J.
,
Lambert, Gregory S.
,
Maldonado, Rebecca J. Kaddis
in
Acids
,
Analysis
,
biomolecular condensates
2025
Retroviral genome selection and virion assembly remain promising targets for novel therapeutic intervention. Recent studies have demonstrated that the Gag proteins of Rous sarcoma virus (RSV) and human immunodeficiency virus type-1 (HIV-1) undergo nuclear trafficking, colocalize with nascent genomic viral RNA (gRNA) at transcription sites, may interact with host transcription factors, and display biophysical properties characteristic of biomolecular condensates. In the present work, we utilized a controlled in vitro condensate assay and advanced imaging approaches to investigate the effects of interactions between RSV Gag condensates and viral and nonviral RNAs on condensate abundance and organization. We observed that the psi (Ψ) packaging signal and the dimerization initiation sequence (DIS) had stabilizing effects on RSV Gag condensates, while RNAs lacking these features promoted or antagonized condensation, depending on local protein concentration and condensate architecture. An RNA containing Ψ, DIS, and the dimerization linkage structure (DLS) that is capable of stable dimer formation was observed to act as a bridge between RSV Gag condensates. These observations suggest additional, condensate-related roles for Gag-Ψ binding, gRNA dimerization, and Gag dimerization/multimerization in gRNA selection and packaging, representing a significant step forward in our understanding of how these interactions collectively facilitate efficient genome packaging.
Journal Article
Dynamic interactions of retroviral Gag condensates with nascent viral RNA at transcriptional burst sites: implications for genomic RNA packaging
by
Kaddis Maldonado, Rebecca J.
,
Parent, Leslie J.
in
Acquired immune deficiency syndrome
,
AIDS
,
Cell Line
2025
Retroviruses depend on the host cell transcription machinery to synthesize unspliced viral RNA (USvRNA), which serves as the genome selected by Gag for packaging. We previously reported that Rous sarcoma virus (RSV) Gag undergoes transient nucleocytoplasmic trafficking, which is needed for optimal genome packaging and co-localizes with USvRNA in the nucleus. Here, using live cell imaging, we found that the association of Gag with USvRNA at the transcriptional burst site is transient and dynamic. Both Gag and the RSV transcriptional burst are located near the periphery of the nucleus, which may facilitate viral RNA export. Our data also suggest that host transcription-associated factors may play a role in trafficking Gag to transcription sites.
Journal Article
A Structural Perspective of the Role of IP6 in Immature and Mature Retroviral Assembly
by
Dick, Robert A.
,
Obr, Martin
,
Schur, Florian K. M.
in
Alpharetrovirus
,
Binding Sites
,
Capsid protein
2021
The small cellular molecule inositol hexakisphosphate (IP6) has been known for ~20 years to promote the in vitro assembly of HIV-1 into immature virus-like particles. However, the molecular details underlying this effect have been determined only recently, with the identification of the IP6 binding site in the immature Gag lattice. IP6 also promotes formation of the mature capsid protein (CA) lattice via a second IP6 binding site, and enhances core stability, creating a favorable environment for reverse transcription. IP6 also enhances assembly of other retroviruses, from both the Lentivirus and the Alpharetrovirus genera. These findings suggest that IP6 may have a conserved function throughout the family Retroviridae. Here, we discuss the different steps in the viral life cycle that are influenced by IP6, and describe in detail how IP6 interacts with the immature and mature lattices of different retroviruses.
Journal Article
Remembering Jan Svoboda: A Personal Reflection
2018
The Czech scientist Jan Svoboda was a pioneer of Rous sarcoma virus (RSV). In the 1960s, before the discovery of reverse transcriptase, he demonstrated the long-term persistence of the viral genome in non-productive mammalian cells, and he supported the DNA provirus hypothesis of Howard Temin. He showed how the virus can be rescued in the infectious form and elucidated the replication-competent nature of the Prague strain of RSV later used for the identification of the src oncogene. His studies straddled molecular oncology and virology, and he remained an active contributor to the field until his death last year. Throughout the 50 years that I was privileged to know Svoboda as my mentor and friend, I admired his depth of scientific inquiry and his steadfast integrity in the face of political oppression.
Journal Article
RNA-Binding Domains of Heterologous Viral Proteins Substituted for Basic Residues in the RSV Gag NC Domain Restore Specific Packaging of Genomic RNA
by
Lochmann, Timothy L.
,
Rice, Breanna L.
,
Parent, Leslie J.
in
Acids
,
Amino Acid Substitution
,
Binding proteins
2020
The Rous sarcoma virus Gag polyprotein transiently traffics through the nucleus, which is required for efficient incorporation of the viral genomic RNA (gRNA) into virus particles. Packaging of gRNA is mediated by two zinc knuckles and basic residues located in the nucleocapsid (NC) domain in Gag. To further examine the role of basic residues located downstream of the zinc knuckles in gRNA encapsidation, we used a gain-of-function approach. We replaced a basic residue cluster essential for gRNA packaging with heterologous basic residue motif (BR) with RNA-binding activity from either the HIV-1 Rev protein (Rev BR) or the HSV ICP27 protein (ICP27 BR). Compared to wild-type Gag, the mutant ICP27 BR and Rev BR Gag proteins were much more strongly localized to the nucleus and released significantly lower levels of virus particles. Surprisingly, both the ICP27 BR and Rev BR mutants packaged normal levels of gRNA per virus particle when examined in the context of a proviral vector, yet both mutants were noninfectious. These results support the hypothesis that basic residues located in the C-terminal region of NC are required for selective gRNA packaging, potentially by binding non-specifically to RNA via electrostatic interactions.
Journal Article
In vitro assembly of the Rous Sarcoma Virus capsid protein into hexamer tubes at physiological temperature
by
Jaballah, Soumeya A.
,
Bailey, Graham D.
,
Hyun, Jaekyung
in
631/45/56
,
631/45/612/1256
,
631/535/1258/1259
2017
During a proteolytically-driven maturation process, the orthoretroviral capsid protein (CA) assembles to form the convex shell that surrounds the viral genome. In some orthoretroviruses, including Rous Sarcoma Virus (RSV), CA carries a short and hydrophobic spacer peptide (SP) at its C-terminus early in the maturation process, which is progressively removed as maturation proceeds. In this work, we show that RSV CA assembles
in vitro
at near-physiological temperatures, forming hexamer tubes that effectively model the mature capsid surface. Tube assembly is strongly influenced by electrostatic effects, and is a nucleated process that remains thermodynamically favored at lower temperatures, but is effectively arrested by the large Gibbs energy barrier associated with nucleation. RSV CA tubes are multi-layered, being formed by nested and concentric tubes of capsid hexamers. However the spacer peptide acts as a layering determinant during tube assembly. If only a minor fraction of CA-SP is present, multi-layered tube formation is blocked, and single-layered tubes predominate. This likely prevents formation of biologically aberrant multi-layered capsids in the virion. The generation of single-layered hexamer tubes facilitated 3D helical image reconstruction from cryo-electron microscopy data, revealing the basic tube architecture.
Journal Article
From Rous sarcoma virus to plasminogen activator, src oncogene and cancer management
2011
Plasminogen activator (PLAU) is a serine protease that converts plasminogen to plasmin, a general protease, which promotes fibrinolysis and degradation of extracellular matrix. PLAU was reported in 1970s as one of the robustly induced enzymatic activities in Rous sarcoma virus (RSV)-transformed chicken cells. More than three decades later, with the completion of the sequencing of the chicken genome and the subsequent availability of Affymetrix GeneChip genome arrays, several laboratories have surveyed the transcriptional program affected by the RSV transformation. Interestingly, the PLAU gene was shown to be the most highly upregulated transcript. The induction of PLAU was a transformation-dependent process because viruses with deleted Src gene did not induce the transcription of the PLAU gene. Both Src and PLAU genes are associated with and contribute to the complex phenotype of human cancer. Although the activity and structures of these two enzymes are well characterized, the precise molecular function of these gene products in signaling networks is still not fully understood. Yet, the knowledge of their association with cancer is already translated into the clinical setting. Src kinase inhibitors are being tested in clinical trials of cancer therapy, and PLAU gene and its inhibitor have been included as biomarkers with strong prognostic and therapeutic predictive values. This vignette reviews the history of PLAU and Src discovery, and illuminates the complexity of their relationship, but also points to their emerging impact on public health.
Journal Article