Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,251 result(s) for "S100 Proteins - genetics"
Sort by:
Tissue mRNA for S100A4, S100A6, S100A8, S100A9, S100A11 and S100P Proteins in Colorectal Neoplasia: A Pilot Study
S100 proteins are involved in the pathogenesis of sporadic colorectal carcinoma through different mechanisms. The aim of our study was to assess tissue mRNA encoding S100 proteins in patients with non-advanced and advanced colorectal adenoma. Mucosal biopsies were taken from the caecum, transverse colon and rectum during diagnostic and/or therapeutic colonoscopy. Another biopsy was obtained from adenomatous tissue in the advanced adenoma group. The tissue mRNA for each S100 protein (S100A4, S100A6, S100A8, S100A9, S100A11 and S100P) was investigated. Eighteen biopsies were obtained from the healthy mucosa in controls and the non-advanced adenoma group (six individuals in each group) and thirty biopsies in the advanced adenoma group (ten patients). Nine biopsies were obtained from advanced adenoma tissue (9/10 patients). Significant differences in mRNA investigated in the healthy mucosa were identified between (1) controls and the advanced adenoma group for S100A6 (p = 0.012), (2) controls and the non-advanced adenoma group for S100A8 (p = 0.033) and (3) controls and the advanced adenoma group for S100A11 (p = 0.005). In the advanced adenoma group, differences between the healthy mucosa and adenomatous tissue were found in S100A6 (p = 0.002), S100A8 (p = 0.002), S100A9 (p = 0.021) and S100A11 (p = 0.029). Abnormal mRNA expression for different S100 proteins was identified in the pathological adenomatous tissue as well as in the morphologically normal large intestinal mucosa.
Involvement of S100A6/S100A11 in T-Cell Immune Regulatory in HCC Revealed by Single Cell RNA-seq
Background: Immunotherapy plays a significant role in the treatment of hepatocellular carcinoma (HCC). Members of the S100 protein family (S100s) have been widely implicated in the pathogenesis and progression of tumors. However, the exact mechanism by which S100s contribute to tumor immunity remains unclear. Methods: To explore the role of S100s in HCC immune cells, we collected and comparatively analyzed single-cell RNA sequencing (scRNA-seq) data of HCC and hepatitis B virus-associated HCC. By mapping cell classification and searching for S100s binding targets and downstream targets. Results: S100A6/S100A11 was differentially expressed in tumor T cells and involved in the nuclear factor (NF) κB pathway. Further investigation of the TCGA dataset revealed that patients with low S100A6/S100A11 expression had a better prognosis. Temporal cell trajectory analysis showed that the activation of the NF-κB pathway is at a critical stage and has an important impact on the tumor microenvironment. Conclusion: Our study revealed that S100A6/S100A11 could be involved in regulating the differentiation and cellular activity of T-cell subpopulations in HCC, and its low expression was positively correlated with prognosis. It may provide a new direction for immunotherapy of HCC and a theoretical basis for future clinical applications.
Reciprocal Modulation of Surface Expression of Annexin A2 in a Human Umbilical Vein Endothelial Cell-Derived Cell Line by Eicosapentaenoic Acid and Docosahexaenoic Acid
Annexin A2 (ANXA2), a member of the annexin family of cytosolic Ca(2+)-binding proteins, plays a pivotal role in vascular biology. Small amounts of this protein and S100A10 protein are exposed on the surface of endothelial cells (ECs). They control fibrinolysis by recruiting tissue-type and urokinase-type plasminogen activators from the plasma. Nutritional studies indicate that two major long-chain polyunsaturated fatty acids (PUFAs), i.e., eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), provide benefits for EC functions. The effects of EPA and DHA on the plasminogen/plasmin system have not been characterized. Proteomic analysis of a cultured human umbilical vein EC-derived cell line, HUV-EC-C, showed that cell-associated ANXA2 decreased with EPA treatment and increased with DHA. A small fraction of ANXA2 was bound to the cell surface, which was also affected by these PUFAs following the same trends. Cell surface expression was negatively regulated by protein kinase C (PKC) α-mediated Ser-phosphorylation, which was up- and down-regulated by EPA and DHA, respectively. These PUFAs differentially affected a small fraction of caveolae/rafts-associated ANXA2. In addition to chymotrypsin-like activity in the serum, newly activated plasmin cleaved the ANXA2 on the cell surface at distinct sites in the N-terminal sequence. ANXA2 also bound to membranes released in the medium, which was similarly processed by these proteases. Both the PUFAs did not directly affect the release. These results suggest that EPA and DHA reciprocally control cell surface location of ANXA2. Moreover, cleavage of this protein by plasmin likely resulted in autodigestion of the platform for formation of this protease. In conjunction with termination of the proteolysis by rapid inactivation of plasmin by α-2-antiplasmin and other polypeptide inhibitors, this feedback mechanism may emphasize the benefits of these PUFA in regulation of the initiation of fibrinolysis on the surface of ECs.
Regulation of Filaggrin, Loricrin, and Involucrin by IL-4, IL-13, IL-17A, IL-22, AHR, and NRF2: Pathogenic Implications in Atopic Dermatitis
Atopic dermatitis (AD) is an eczematous, pruritic skin disorder with extensive barrier dysfunction and elevated interleukin (IL)-4 and IL-13 signatures. The barrier dysfunction correlates with the downregulation of barrier-related molecules such as filaggrin (FLG), loricrin (LOR), and involucrin (IVL). IL-4 and IL-13 potently inhibit the expression of these molecules by activating signal transducer and activator of transcription (STAT)6 and STAT3. In addition to IL-4 and IL-13, IL-22 and IL-17A are probably involved in the barrier dysfunction by inhibiting the expression of these barrier-related molecules. In contrast, natural or medicinal ligands for aryl hydrocarbon receptor (AHR) are potent upregulators of FLG, LOR, and IVL expression. As IL-4, IL-13, IL-22, and IL-17A are all capable of inducing oxidative stress, antioxidative AHR agonists such as coal tar, glyteer, and tapinarof exert particular therapeutic efficacy for AD. These antioxidative AHR ligands are known to activate an antioxidative transcription factor, nuclear factor E2-related factor 2 (NRF2). This article focuses on the mechanisms by which FLG, LOR, and IVL expression is regulated by IL-4, IL-13, IL-22, and IL-17A. The author also summarizes how AHR and NRF2 dual activators exert their beneficial effects in the treatment of AD.
S100A4 inhibits cell proliferation by interfering with the S100A1-RAGE V domain
The Ca2+-dependent human S100A4 (Mts1) protein is part of the S100 family. Here, we studied the interactions of S100A4 with S100A1 using nuclear magnetic resonance (NMR) spectroscopy. We used the chemical shift perturbed residues from HSQC to model S100A4 and S100A1 complex with HADDOCK software. We observed that S100A1 and the RAGE V domain have an analogous binding area in S100A4. We discovered that S100A4 acts as an antagonist among the RAGE V domain and S100A1, which inhibits tumorigenesis and cell proliferation. We used a WST-1 assay to examine the bioactivity of S100A1 and S100A4. This study could possibly be beneficial for evaluating new proteins for the treatment of diseases.
S100 proteins in cancer
Key Points The S100 protein family is composed of 21 members that exhibit a high degree of structural similarity, but are not functionally interchangeable. S100 family members function as intracellular Ca 2+ sensors and extracellular factors. Chromosomal alterations, mutations and/or translocations in S100 genes are rare in human cancers. Nonetheless, dysregulation of multiple S100 proteins is a common occurrence in individual human cancers and most often involves upregulation. Each human cancer exhibits a distinctive S100 protein profile that can be both stage-specific and subtype-specific, as well as facilitate diagnosis, prognosis and/or drug response. The modulation of S100 expression is a common downstream event in S100 signalling cascades, resulting in feedback loops that can sustain and exacerbate tumour progression. The most common strategies for inhibiting S100 proteins exploit small molecules that block the hydrophobic cleft required for S100 proteins to interact with targets and elicit biological effects. Inhibitors of two family members, S100B and S100A9, are in clinical trials for melanoma and prostate cancer, respectively. The S100 family of proteins modulates cellular responses by acting both as intracellular Ca 2+ sensors and as extracellular factors. Expression of several members of this family is dysregulated in cancer, and each cancer shows a unique S100 protein profile or signature. In this Review, Anne Bresnick and colleagues highlight new findings regarding the role of S100 proteins in cancer diagnosis and treatment. In humans, the S100 protein family is composed of 21 members that exhibit a high degree of structural similarity, but are not functionally interchangeable. This family of proteins modulates cellular responses by functioning both as intracellular Ca 2+ sensors and as extracellular factors. Dysregulated expression of multiple members of the S100 family is a common feature of human cancers, with each type of cancer showing a unique S100 protein profile or signature. Emerging in vivo evidence indicates that the biology of most S100 proteins is complex and multifactorial, and that these proteins actively contribute to tumorigenic processes such as cell proliferation, metastasis, angiogenesis and immune evasion. Drug discovery efforts have identified leads for inhibiting several S100 family members, and two of the identified inhibitors have progressed to clinical trials in patients with cancer. This Review highlights new findings regarding the role of S100 family members in cancer diagnosis and treatment, the contribution of S100 signalling to tumour biology, and the discovery and development of S100 inhibitors for treating cancer.
S100A6 protein: functional roles
S100A6 protein belongs to the A group of the S100 protein family of Ca 2+ -binding proteins. It is expressed in a limited number of cell types in adult normal tissues and in several tumor cell types. As an intracellular protein, S100A6 has been implicated in the regulation of several cellular functions, such as proliferation, apoptosis, the cytoskeleton dynamics, and the cellular response to different stress factors. S100A6 can be secreted/released by certain cell types which points to extracellular effects of the protein. RAGE (receptor for advanced glycation endproducts) and integrin β1 transduce some extracellular S100A6’s effects. Dosage of serum S100A6 might aid in diagnosis in oncology.
S100A6 participates in initiation of autoimmune encephalitis and is under epigenetic control
Introduction Autoimmune encephalitis (AE) is caused by autoantibodies attacking neuronal cell surface antigens and/or synaptic antigens. We previously demonstrated that S100A6 was hypomethylated in patients with AE and that it promoted B lymphocyte infiltration through the simulated blood–brain barrier (BBB). In this study, we focused on the epigenetic regulation of S100A6, the process by which S100A6 affects B lymphocyte infiltration, and the therapeutic potential of S100A6 antibodies. Methods We enrolled and collected serum from 10 patients with AE and 10 healthy control (HC) subjects. Promoter methylation and 5‐azacytidine treatment assays were conducted to observe the methylation process of S100A6. The effect of S100A6 on B lymphocytes was analyzed using an adhesion assay and leukocyte transendothelial migration (LTEM) assay. A LTEM assay was also used to compare the effects of the serum of HCs, serum of AE patients, S100A6 recombinant protein, and S100A6 antibodies on B lymphocytes. Result The promoter methylation and 5‐azacytidine treatment assays confirmed that S100A6 was regulated by DNA methylation. The adhesion study demonstrated that the addition of S100A6 enhanced adhesion between B lymphocytes and a BBB endothelial cell line in a concentration‐dependent manner. The LTEM assay showed that the serum of AE patients, as well as S100A6, promoted B lymphocyte infiltration and that this effect could be attenuated by S100A6 antibodies. Conclusion We clarified that S100A6 was under epigenetic regulation in patients with AE and that it helped B lymphocytes to adhere to and infiltrate the BBB endothelial layer, which could be counteracted by S100A6 antibodies. Therefore, the methylation profile of S100A6 could be a marker of the activity of AE, and countering the effect of S100A6 may be a potential treatment target for AE. We demonstrated that S100A6 participated in promoting B lymphocyte infiltration through the blood‐brain barrier in patients with autoimmune encephalitis. This promoted infiltration effect could be attenuated by the S100A6 antibody. Further investigation of the effect of S100A6 can improve our understanding of the pathogenesis of autoimmune encephalitis and serve as a potential therapeutic target.
Cellular and molecular basis for stress-induced depression
Chronic stress has a crucial role in the development of psychiatric diseases, such as anxiety and depression. Dysfunction of the medial prefrontal cortex (mPFC) has been linked to the cognitive and emotional deficits induced by stress. However, little is known about the molecular and cellular determinants in mPFC for stress-associated mental disorders. Here we show that chronic restraint stress induces the selective loss of p11 (also known as annexin II light chain, S100A10), a multifunctional protein binding to 5-HT receptors, in layer II/III neurons of the prelimbic cortex (PrL), as well as depression-like behaviors, both of which are reversed by selective serotonin reuptake inhibitors (SSRIs) and the tricyclic class of antidepressant (TCA) agents. In layer II/III of the PrL, p11 is highly concentrated in dopamine D2 receptor-expressing (D2 + ) glutamatergic neurons. Viral expression of p11 in D2 + PrL neurons alleviates the depression-like behaviors exhibited by genetically manipulated mice with D2 + neuron-specific or global deletion of p11. In stressed animals, overexpression of p11 in D2 + PrL neurons rescues depression-like behaviors by restoring glutamatergic transmission. Our results have identified p11 as a key molecule in a specific cell type that regulates stress-induced depression, which provides a framework for the development of new strategies to treat stress-associated mental illnesses.
VolcanoFinder: Genomic scans for adaptive introgression
Recent research shows that introgression between closely-related species is an important source of adaptive alleles for a wide range of taxa. Typically, detection of adaptive introgression from genomic data relies on comparative analyses that require sequence data from both the recipient and the donor species. However, in many cases, the donor is unknown or the data is not currently available. Here, we introduce a genome-scan method-VolcanoFinder-to detect recent events of adaptive introgression using polymorphism data from the recipient species only. VolcanoFinder detects adaptive introgression sweeps from the pattern of excess intermediate-frequency polymorphism they produce in the flanking region of the genome, a pattern which appears as a volcano-shape in pairwise genetic diversity. Using coalescent theory, we derive analytical predictions for these patterns. Based on these results, we develop a composite-likelihood test to detect signatures of adaptive introgression relative to the genomic background. Simulation results show that VolcanoFinder has high statistical power to detect these signatures, even for older sweeps and for soft sweeps initiated by multiple migrant haplotypes. Finally, we implement VolcanoFinder to detect archaic introgression in European and sub-Saharan African human populations, and uncovered interesting candidates in both populations, such as TSHR in Europeans and TCHH-RPTN in Africans. We discuss their biological implications and provide guidelines for identifying and circumventing artifactual signals during empirical applications of VolcanoFinder.