Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
2 result(s) for "SESAM framework"
Sort by:
Using species richness and functional traits predictions to constrain assemblage predictions from stacked species distribution models
Aim: Modelling species distributions at the community level is required to make effective forecasts of global change impacts on diversity and ecosystem functioning. Community predictions may be achieved using macroecological properties of communities (macroecological models, MEM), or by stacking of individual species distribution models (stacked species distribution models, SSDMs). To obtain more realistic predictions of species assemblages, the SESAM (spatially explicit species assemblage modelling) framework suggests applying successive filters to the initial species source pool, by combining different modelling approaches and rules. Here we provide a first test of this framework in mountain grassland communities. Location: The western Swiss Alps. Methods: Two implementations of the SESAM framework were tested: a 'probability ranking' rule based on species richness predictions and rough probabilities from SDMs, and a 'trait range' rule that uses the predicted upper and lower bound of community-level distribution of three different functional traits (vegetative height, specific leaf area, and seed mass) to constrain a pool of species from binary SDMs predictions. Results: We showed that all independent constraints contributed to reduce species richness overprediction. Only the 'probability ranking' rule allowed slight but significant improvements in the predictions of community composition. Main conclusions: We tested various implementations of the SESAM framework by integrating macroecological constraints into S-SDM predictions, and report one that is able to improve compositional predictions. We discuss possible improvements, such as further understanding the causality and precision of environmental predictors, using other assembly rules and testing other types of ecological or functional constraints.
Predicting richness and composition in mountain insect communities at high resolution: a new test of the SESAM framework
Aim: The aim of this study was to test different modelling approaches, including a new framework, for predicting the spatial distribution of richness and composition of two insect groups. Location: The western Swiss Alps. Methods: We compared two community modelling approaches: the classical method of stacking binary prediction obtained from individual species distribution models (binary stacked species distribution models, bS-SDMs), and various implementations of a recent framework (spatially explicit species assemblage modelling, SESAM) based on four steps that integrate the different drivers of the assembly process in a unique modelling procedure. We used: (1) five methods to create bS-SDM predictions; (2) two approaches for predicting species richness, by summing individual SDM probabilities or by modelling the number of species (i.e. richness) directly; and (3) five different biotic rules based either on ranking probabilities from SDMs or on community co-occurrence patterns. Combining these various options resulted in 47 implementations for each taxon. Results: Species richness of the two taxonomic groups was predicted with good accuracy overall, and in most cases bS-SDM did not produce a biased prediction exceeding the actual number of species in each unit. In the prediction of community composition bS-SDM often also yielded the best evaluation score. In the case of poor performance of bS-SDM (i.e. when bS-SDM overestimated the prediction of richness) the SESAM framework improved predictions of species composition. Main conclusions: Our results differed from previous findings using community-level models. First, we show that overprediction of richness by bS-SDM is not a general rule, thus highlighting the relevance of producing good individual SDMs to capture the ecological filters that are important for the assembly process. Second, we confirm the potential of SESAM when richness is overpredicted by bS-SDM; limiting the number of species for each unit and applying biotic rules (here using the ranking of SDM probabilities) can improve predictions of species composition.