Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
3,021
result(s) for
"Shellfish Poisoning"
Sort by:
Marine Algal Toxins and Public Health: Insights from Shellfish and Fish, the Main Biological Vectors
2024
Exposure to toxigenic harmful algal blooms (HABs) can result in widely recognized acute poisoning in humans. The five most commonly recognized HAB-related illnesses are diarrhetic shellfish poisoning (DSP), paralytic shellfish poisoning (PSP), amnesic shellfish poisoning (ASP), neurotoxic shellfish poisoning (NSP), and ciguatera poisoning (CP). Despite being caused by exposure to various toxins or toxin analogs, these clinical syndromes share numerous similarities. Humans are exposed to these toxins mainly through the consumption of fish and shellfish, which serve as the main biological vectors. However, the risk of human diseases linked to toxigenic HABs is on the rise, corresponding to a dramatic increase in the occurrence, frequency, and intensity of toxigenic HABs in coastal regions worldwide. Although a growing body of studies have focused on the toxicological assessment of HAB-related species and their toxins on aquatic organisms, the organization of this information is lacking. Consequently, a comprehensive review of the adverse effects of HAB-associated species and their toxins on those organisms could deepen our understanding of the mechanisms behind their toxic effects, which is crucial to minimizing the risks of toxigenic HABs to human and public health. To this end, this paper summarizes the effects of the five most common HAB toxins on fish, shellfish, and humans and discusses the possible mechanisms.
Journal Article
Phycotoxins in Marine Shellfish: Origin, Occurrence and Effects on Humans
by
Vieites, Juan Manuel
,
Blanco, Lucía
,
Rodríguez, Laura P.
in
Algal blooms
,
Amnesic shellfish poisoning
,
biotoxins
2018
Massive phytoplankton proliferation, and the consequent release of toxic metabolites, can be responsible for seafood poisoning outbreaks: filter-feeding mollusks, such as shellfish, mussels, oysters or clams, can accumulate these toxins throughout the food chain and present a threat for consumers’ health. Particular environmental and climatic conditions favor this natural phenomenon, called harmful algal blooms (HABs); the phytoplankton species mostly involved in these toxic events are dinoflagellates or diatoms belonging to the genera Alexandrium, Gymnodinium, Dinophysis, and Pseudo-nitzschia. Substantial economic losses ensue after HABs occurrence: the sectors mainly affected include commercial fisheries, tourism, recreational activities, and public health monitoring and management. A wide range of symptoms, from digestive to nervous, are associated to human intoxication by biotoxins, characterizing different and specific syndromes, called paralytic shellfish poisoning, amnesic shellfish poisoning, diarrhetic shellfish poisoning, and neurotoxic shellfish poisoning. This review provides a complete and updated survey of phycotoxins usually found in marine invertebrate organisms and their relevant properties, gathering information about the origin, the species where they were found, as well as their mechanism of action and main effects on humans.
Journal Article
SoundToxins: A Research and Monitoring Partnership for Harmful Phytoplankton in Washington State
2023
The more frequent occurrence of marine harmful algal blooms (HABs) and recent problems with newly-described toxins in Puget Sound have increased the risk for illness and have negatively impacted sustainable access to shellfish in Washington State. Marine toxins that affect safe shellfish harvest because of their impact on human health are the saxitoxins that cause paralytic shellfish poisoning (PSP), domoic acid that causes amnesic shellfish poisoning (ASP), diarrhetic shellfish toxins that cause diarrhetic shellfish poisoning (DSP) and the recent measurement of azaspiracids, known to cause azaspiracid poisoning (AZP), at low concentrations in Puget Sound shellfish. The flagellate, Heterosigma akashiwo, impacts the health and harvestability of aquacultured and wild salmon in Puget Sound. The more recently described flagellates that cause the illness or death of cultivated and wild shellfish, include Protoceratium reticulatum, known to produce yessotoxins, Akashiwo sanguinea and Phaeocystis globosa. This increased incidence of HABs, especially dinoflagellate HABs that are expected in increase with enhanced stratification linked to climate change, has necessitated the partnership of state regulatory programs with SoundToxins, the research, monitoring and early warning program for HABs in Puget Sound, that allows shellfish growers, Native tribes, environmental learning centers and citizens, to be the “eyes on the coast”. This partnership enables safe harvest of wholesome seafood for consumption in the region and helps to describe unusual events that impact the health of oceans, wildlife and humans.
Journal Article
Saxitoxin in Alaskan commercial crab species
by
Litaker, Richard Wayne
,
Holland, William C.
,
Kibler, Steven R.
in
Alaska
,
Animals
,
Archipelagoes
2025
Paralytic shellfish poisoning (PSP) is a pervasive human health concern associated with subsistence, recreationally and commercially harvested Alaskan shellfish. PSP is caused by saxitoxins (STX), a family of structurally similar neurotoxins produced by the marine microalgae Alexandrium catenella (formerly A. fundyense ). These toxins accumulate in filter-feeding shellfish such as clams, mussels and oysters. While PSP is commonly associated with consuming bivalves, toxic STX levels can also be found in crab viscera (crab butter). The first cases of PSP from consuming Dungeness crab viscera ( Metacarcinus magister ) were reported in 1992. Although this incident and others did not involve commercially harvested crab, they did impact management of the Dungeness crab fishery in Alaska. Current regulations in southeast Alaska permit the sale of whole Dungeness crab, whereas those in the Kodiak Archipelago must have their viscera removed post-harvest to prevent PSP. This study examines the impacts of STXs and current regulations on the Alaskan crab fishery, with a focus on Dungeness crab. Data on commercial landings and the value of harvested Dungeness crab and processed products showed that regulations to protect human health, combined with market forces over the past 30 years, have shifted the fishery’s focus toward Dungeness crab products without viscera. The study also presents time series data on STX concentrations in Dungeness crab from 1992 to 2023, along with maps indicating collection locations and their associated toxicity levels. The same data for King crab ( Paralithodes or Lithodes spp.) and Tanner (Snow) crab ( Chionoecetes spp.) are included to assess the prevalence of STX in these commercially harvested species. Further, a preliminary analysis suggests regional variations in the toxicity of A. catenella strains could affect regional shellfish toxicity.
Journal Article
Guidance Level for Brevetoxins in French Shellfish
2021
Brevetoxins (BTXs) are marine biotoxins responsible for neurotoxic shellfish poisoning (NSP) after ingestion of contaminated shellfish. NSP is characterized by neurological, gastrointestinal and/or cardiovascular symptoms. The main known producer of BTXs is the dinoflagellate Karenia brevis, but other microalgae are also suspected to synthesize BTX-like compounds. BTXs are currently not regulated in France and in Europe. In November 2018, they have been detected for the first time in France in mussels from a lagoon in the Corsica Island (Mediterranean Sea), as part of the network for monitoring the emergence of marine biotoxins in shellfish. To prevent health risks associated with the consumption of shellfish contaminated with BTXs in France, a working group was set up by the French Agency for Food, Environmental and Occupational Health & Safety (Anses). One of the aims of this working group was to propose a guidance level for the presence of BTXs in shellfish. Toxicological data were too limited to derive an acute oral reference dose (ARfD). Based on human case reports, we identified two lowest-observed-adverse-effect levels (LOAELs). A guidance level of 180 µg BTX-3 eq./kg shellfish meat is proposed, considering a protective default portion size of 400 g shellfish meat.
Journal Article
Evidence for massive and recurrent toxic blooms of Alexandrium catenella in the Alaskan Arctic
by
Uva, Victoria
,
Grebmeier, Jacqueline M.
,
Pickart, Robert S.
in
"Earth, Atmospheric, and Planetary Sciences"
,
Alaska
,
Alexandrium catenella
2021
Among the organisms that spread into and flourish in Arctic waters with rising temperatures and sea ice loss are toxic algae, a group of harmful algal bloom species that produce potent biotoxins. Alexandrium catenella, a cyst-forming dinoflagellate that causes paralytic shellfish poisoning worldwide, has been a significant threat to human health in southeastern Alaska for centuries. It is known to be transported into Arctic regions in waters transiting northward through the Bering Strait, yet there is little recognition of this organism as a human health concern north of the Strait. Here, we describe an exceptionally large A. catenella benthic cyst bed and hydrographic conditions across the Chukchi Sea that support germination and development of recurrent, locally originating and self-seeding blooms. Two prominent cyst accumulation zones result from deposition promoted by weak circulation. Cyst concentrations are among the highest reported globally for this species, and the cyst bed is at least 6× larger in area than any other. These extraordinary accumulations are attributed to repeated inputs from advected southern blooms and to localized cyst formation and deposition. Over the past two decades, warming has likely increased the magnitude of the germination flux twofold and advanced the timing of cell inoculation into the euphotic zone by 20 d. Conditions are also now favorable for bloom development in surface waters. The region is poised to support annually recurrent A. catenella blooms that are massive in scale, posing a significant and worrisome threat to public and ecosystem health in Alaskan Arctic communities where economies are subsistence based.
Journal Article
Toxic Effects and Tumor Promotion Activity of Marine Phytoplankton Toxins: A Review
by
Abassi, Sofia
,
Pradhan, Biswajita
,
Kim, Hansol
in
Algae
,
Amnesic shellfish poisoning
,
Animals
2022
Phytoplankton are photosynthetic microorganisms in aquatic environments that produce many bioactive substances. However, some of them are toxic to aquatic organisms via filter-feeding and are even poisonous to humans through the food chain. Human poisoning from these substances and their serious long-term consequences have resulted in several health threats, including cancer, skin disorders, and other diseases, which have been frequently documented. Seafood poisoning disorders triggered by phytoplankton toxins include paralytic shellfish poisoning (PSP), neurotoxic shellfish poisoning (NSP), amnesic shellfish poisoning (ASP), diarrheic shellfish poisoning (DSP), ciguatera fish poisoning (CFP), and azaspiracid shellfish poisoning (AZP). Accordingly, identifying harmful shellfish poisoning and toxin-producing species and their detrimental effects is urgently required. Although the harmful effects of these toxins are well documented, their possible modes of action are insufficiently understood in terms of clinical symptoms. In this review, we summarize the current state of knowledge regarding phytoplankton toxins and their detrimental consequences, including tumor-promoting activity. The structure, source, and clinical symptoms caused by these toxins, as well as their molecular mechanisms of action on voltage-gated ion channels, are briefly discussed. Moreover, the possible stress-associated reactive oxygen species (ROS)-related modes of action are summarized. Finally, we describe the toxic effects of phytoplankton toxins and discuss future research in the field of stress-associated ROS-related toxicity. Moreover, these toxins can also be used in different pharmacological prospects and can be established as a potent pharmacophore in the near future.
Journal Article
Lipophilic Toxins in Chile: History, Producers and Impacts
2022
A variety of microalgal species produce lipophilic toxins (LT) that are accumulated by filter-feeding bivalves. Their negative impacts on human health and shellfish exploitation are determined by toxic potential of the local strains and toxin biotransformations by exploited bivalve species. Chile has become, in a decade, the world’s major exporter of mussels (Mytilus chilensis) and scallops (Argopecten purpuratus) and has implemented toxin testing according to importing countries’ demands. Species of the Dinophysis acuminata complex and Protoceratium reticulatum are the most widespread and abundant LT producers in Chile. Dominant D. acuminata strains, notwithstanding, unlike most strains in Europe rich in okadaic acid (OA), produce only pectenotoxins, with no impact on human health. Dinophysis acuta, suspected to be the main cause of diarrhetic shellfish poisoning outbreaks, is found in the two southernmost regions of Chile, and has apparently shifted poleward. Mouse bioassay (MBA) is the official method to control shellfish safety for the national market. Positive results from mouse tests to mixtures of toxins and other compounds only toxic by intraperitoneal injection, including already deregulated toxins (PTXs), force unnecessary harvesting bans, and hinder progress in the identification of emerging toxins. Here, 50 years of LST events in Chile, and current knowledge of their sources, accumulation and effects, are reviewed. Improvements of monitoring practices are suggested, and strategies to face new challenges and answer the main questions are proposed.
Journal Article
Diarrhetic Shellfish Toxins and Other Lipophilic Toxins of Human Health Concern in Washington State
by
Trainer, Vera
,
Adams, Nicolaus
,
Eberhart, Bich-Thuy
in
Animals
,
Bivalvia - chemistry
,
Chromatography, Liquid
2013
The illness of three people in 2011 after their ingestion of mussels collected from Sequim Bay State Park, Washington State, USA, demonstrated the need to monitor diarrhetic shellfish toxins (DSTs) in Washington State for the protection of human health. Following these cases of diarrhetic shellfish poisoning, monitoring for DSTs in Washington State became formalized in 2012, guided by routine monitoring of Dinophysis species by the SoundToxins program in Puget Sound and the Olympic Region Harmful Algal Bloom (ORHAB) partnership on the outer Washington State coast. Here we show that the DSTs at concentrations above the guidance level of 16 μg okadaic acid (OA) + dinophysistoxins (DTXs)/100 g shellfish tissue were widespread in sentinel mussels throughout Puget Sound in summer 2012 and included harvest closures of California mussel, varnish clam, manila clam and Pacific oyster. Concentrations of toxins in Pacific oyster and manila clam were often at least half those measured in blue mussels at the same site. The primary toxin isomer in shellfish and plankton samples was dinophysistoxin-1 (DTX-1) with D. acuminata as the primary Dinophysis species. Other lipophilic toxins in shellfish were pectenotoxin-2 (PTX-2) and yessotoxin (YTX) with azaspiracid-2 (AZA-2) also measured in phytoplankton samples. Okadaic acid, azaspiracid-1 (AZA-1) and azaspiracid-3 (AZA-3) were all below the levels of detection by liquid chromatography tandem mass spectrometry (LC-MS/MS). A shellfish closure at Ruby Beach, Washington, was the first ever noted on the Washington State Pacific coast due to DSTs. The greater than average Fraser River flow during the summers of 2011 and 2012 may have provided an environment conducive to dinoflagellates and played a role in the prevalence of toxigenic Dinophysis in Puget Sound.
Journal Article
Detection of Tetrodotoxin Shellfish Poisoning (TSP) Toxins and Causative Factors in Bivalve Molluscs from the UK
by
Lees, David N.
,
Algoet, Myriam
,
Turner, Andrew
in
Animals
,
bivalve molluscs
,
Bivalvia - chemistry
2017
Tetrodotoxins (TTXs) are traditionally associated with the occurrence of tropical Pufferfish Poisoning. In recent years, however, TTXs have been identified in European bivalve mollusc shellfish, resulting in the need to assess prevalence and risk to shellfish consumers. Following the previous identification of TTXs in shellfish from southern England, this study was designed to assess the wider prevalence of TTXs in shellfish from around the coast of the UK. Samples were collected between 2014 and 2016 and subjected to analysis using HILIC-MS/MS. Results showed the continued presence of toxins in shellfish harvested along the coast of southern England, with the maximum concentration of total TTXs reaching 253 µg/kg. TTX accumulation was detected in Pacific oysters (Crassostrea gigas), native oysters (Ostrea edulis) common mussels (Mytilus edulis) and hard clams (Mercenaria mercenaria), but not found in cockles (Cerastoderma edule), razors (Ensis species) or scallops (Pecten maximus). Whilst the highest concentrations were quantified in samples harvested during the warmer summer months, TTXs were still evident during the winter. An assessment of the potential causative factors did not reveal any links with the phytoplankton species Prorocentrum cordatum, instead highlighting a greater level of risk in areas of shallow, estuarine waters with temperatures above 15 °C.
Journal Article