Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
227
result(s) for
"Shock, Hemorrhagic - immunology"
Sort by:
Scavenging Circulating Mitochondrial DNA as a Potential Therapeutic Option for Multiple Organ Dysfunction in Trauma Hemorrhage
2018
Trauma is a leading cause of death worldwide with 5.8 million deaths occurring yearly. Almost 40% of trauma deaths are due to bleeding and occur in the first few hours after injury. Of the remaining severely injured patients up to 25% develop a dysregulated immune response leading to multiple organ dysfunction syndrome (MODS). Despite improvements in trauma care, the morbidity and mortality of this condition remains very high. Massive traumatic injury can overwhelm endogenous homeostatic mechanisms even with prompt treatment. The underlying mechanisms driving MODS are also not fully elucidated. As a result, successful therapies for trauma-related MODS are lacking. Trauma causes tissue damage that releases a large number of endogenous damage-associated molecular patterns (DAMPs). Mitochondrial DAMPs released in trauma, such as mitochondrial DNA (mtDNA), could help to explain part of the immune response in trauma given the structural similarities between mitochondria and bacteria. MtDNA, like bacterial DNA, contains an abundance of highly stimulatory unmethylated CpG DNA motifs that signal through toll-like receptor-9 to produce inflammation. MtDNA has been shown to be highly damaging when injected into healthy animals causing acute organ injury to develop. Elevated circulating levels of mtDNA have been reported in trauma patients but an association with clinically meaningful outcomes has not been established in a large cohort. We aimed to determine whether mtDNA released after clinical trauma hemorrhage is sufficient for the development of MODS. Secondly, we aimed to determine the extent of mtDNA release with varying degrees of tissue injury and hemorrhagic shock in a clinically relevant rodent model. Our final aim was to determine whether neutralizing mtDNA with the nucleic acid scavenging polymer, hexadimethrine bromide (HDMBr), at a clinically relevant time point
would reduce the severity of organ injury in this model.
We have shown that the release of mtDNA is sufficient for the development of multiple organ injury. MtDNA concentrations likely peak at different points in the early postinjury phase dependent on the degree of isolated trauma vs combined trauma and hemorrhagic shock. HDMBr scavenging of circulating mtDNA (and nuclear DNA, nDNA) is associated with rescue from severe multiple organ injury in the animal model. This suggests that HDMBr could have utility in rescue from human trauma-induced MODS.
Journal Article
Hemorrhagic shock primes for lung vascular endothelial cell pyroptosis: role in pulmonary inflammation following LPS
2016
Hemorrhagic shock (HS) often renders patients more susceptible to lung injury by priming for an exaggerated response to a second infectious stimulus. Acute lung injury (ALI) is a major component of multiple organ dysfunction syndrome following HS and regularly serves as a major cause of patient mortality. The lung vascular endothelium is an active organ that has a central role in the development of ALI through synthesizing and releasing of a number of inflammatory mediators. Cell pyroptosis is a caspase-1-dependent regulated cell death, which features rapid plasma membrane rupture and release of proinflammatory intracellular contents. In this study, we demonstrated an important role of HS in priming for LPS-induced lung endothelial cell (EC) pyroptosis. We showed that LPS through TLR4 activates Nlrp3 (NACHT, LRR, and PYD domains containing protein 3) inflammasome in mouse lung vascular EC, and subsequently induces caspase-1 activation. However, HS induced release of high-mobility group box 1 (HMGB1), which acting through the receptor for advanced glycation end products initiates EC endocytosis of HMGB1, and subsequently triggers a cascade of molecular events, including cathepsin B release from ruptured lysosomes followed by pyroptosome formation and caspase-1 activation. These HS-induced events enhance LPS-induced EC pyroptosis. We further showed that lung vascular EC pyroptosis significantly exaggerates lung inflammation and injury. The present study explores a novel mechanism underlying HS-primed ALI and thus presents a potential therapeutic target for post-HS ALI.
Journal Article
The protective effect of carbamazepine on acute lung injury induced by hemorrhagic shock and resuscitation in rats
by
Nakamura, Ryu
,
Omori, Emiko
,
Takahashi, Toru
in
Acute Lung Injury - blood
,
Acute Lung Injury - diagnosis
,
Acute Lung Injury - immunology
2024
Hemorrhagic shock and resuscitation (HSR) enhances the risk of acute lung injury (ALI). This study investigated the protective effect of carbamazepine (CBZ) on HSR-induced ALI in rats. Male Sprague-Dawley rats were allocated into five distinct groups through randomization: control (SHAM), saline + HSR (HSR), CBZ + HSR (CBZ/HSR), dimethyl sulfoxide (DMSO) + HSR (DMSO/HSR), and CBZ + chloroquine (CQ) + HSR (CBZ/CQ/HSR). Subsequently, HSR models were established. To detect tissue damage, we measured lung histological changes, lung injury scores, and wet/dry weight ratios. We measured neutrophil counts as well as assessed the expression of inflammatory factors using RT-PCR to determine the inflammatory response. We detected autophagy-related proteins LC3II/LC3I, P62, Beclin-1, and Atg12-Atg5 using western blotting. Pretreatment with CBZ improved histopathological changes in the lungs and reduced lung injury scores. The CBZ pretreatment group exhibited significantly reduced lung wet/dry weight ratio, neutrophil aggregation and number, and inflammation factor ( TNF-α and iNOS ) expression. CBZ changed the expression levels of autophagy-related proteins (LC3II/LC3I, beclin-1, Atg12-Atg5, and P62), suggesting autophagy activation. However, after injecting CQ, an autophagy inhibitor, the beneficial effects of CBZ were reversed. Taken together, CBZ pretreatment improved HSR-induced ALI by suppressing inflammation, at least in part, through activating autophagy. Thus, our study offers a novel perspective for treating HSR-induced ALI.
Journal Article
The Role of DAMPS in Burns and Hemorrhagic Shock Immune Response: Pathophysiology and Clinical Issues. Review
by
Alemanno, Giovanni
,
Martellucci, Jacopo
,
Guagni, Tommaso
in
Adaptive immunity
,
Alarmins - metabolism
,
Apoptosis
2021
Severe or major burns induce a pathophysiological, immune, and inflammatory response that can persist for a long time and affect morbidity and mortality. Severe burns are followed by a “hypermetabolic response”, an inflammatory process that can be extensive and become uncontrolled, leading to a generalized catabolic state and delayed healing. Catabolism causes the upregulation of inflammatory cells and innate immune markers in various organs, which may lead to multiorgan failure and death. Burns activate immune cells and cytokine production regulated by damage-associated molecular patterns (DAMPs). Trauma has similar injury-related immune responses, whereby DAMPs are massively released in musculoskeletal injuries and elicit widespread systemic inflammation. Hemorrhagic shock is the main cause of death in trauma. It is hypovolemic, and the consequence of volume loss and the speed of blood loss manifest immediately after injury. In burns, the shock becomes evident within the first 24 h and is hypovolemic-distributive due to the severely compromised regulation of tissue perfusion and oxygen delivery caused by capillary leakage, whereby fluids shift from the intravascular to the interstitial space. In this review, we compare the pathophysiological responses to burns and trauma including their associated clinical patterns.
Journal Article
IL33-mediated ILC2 activation and neutrophil IL5 production in the lung response after severe trauma: A reverse translation study from a human cohort to a mouse trauma model
2017
The immunosuppression and immune dysregulation that follows severe injury includes type 2 immune responses manifested by elevations in interleukin (IL) 4, IL5, and IL13 early after injury. We hypothesized that IL33, an alarmin released early after tissue injury and a known regulator of type 2 immunity, contributes to the early type 2 immune responses after systemic injury.
Blunt trauma patients admitted to the trauma intensive care unit of a level I trauma center were enrolled in an observational study that included frequent blood sampling. Dynamic changes in IL33 and soluble suppression of tumorigenicity 2 (sST2) levels were measured in the plasma and correlated with levels of the type 2 cytokines and nosocomial infection. Based on the observations in humans, mechanistic experiments were designed in a mouse model of resuscitated hemorrhagic shock and tissue trauma (HS/T). These experiments utilized wild-type C57BL/6 mice, IL33-/- mice, B6.C3(Cg)-Rorasg/sg mice deficient in group 2 innate lymphoid cells (ILC2), and C57BL/6 wild-type mice treated with anti-IL5 antibody. Severely injured human blunt trauma patients (n = 472, average injury severity score [ISS] = 20.2) exhibited elevations in plasma IL33 levels upon admission and over time that correlated positively with increases in IL4, IL5, and IL13 (P < 0.0001). sST2 levels also increased after injury but in a delayed manner compared with IL33. The increases in IL33 and sST2 were significantly greater in patients that developed nosocomial infection and organ dysfunction than similarly injured patients that did not (P < 0.05). Mechanistic studies were carried out in a mouse model of HS/T that recapitulated the early increase in IL33 and delayed increase in sST2 in the plasma (P < 0.005). These studies identified a pathway where IL33 induces ILC2 activation in the lung within hours of HS/T. ILC2 IL5 up-regulation induces further IL5 expression by CXCR2+ lung neutrophils, culminating in early lung injury. The major limitations of this study are the descriptive nature of the human study component and the impact of the potential differences between human and mouse immune responses to polytrauma. Also, the studies performed did not permit us to make conclusions about the impact of IL33 on pulmonary function.
These results suggest that IL33 may initiate early detrimental type 2 immune responses after trauma through ILC2 regulation of neutrophil IL5 production. This IL33-ILC2-IL5-neutrophil axis defines a novel regulatory role for ILC2 in acute lung injury that could be targeted in trauma patients prone to early lung dysfunction.
Journal Article
Novel Role for PD-1:PD-L1 as Mediator of Pulmonary Vascular Endothelial Cell Functions in Pathogenesis of Indirect ARDS in Mice
by
Huang, Xin
,
Fallon, Eleanor A.
,
Monaghan, Sean F.
in
Angiopoietin
,
Angiopoietin-1 and-2
,
Animals
2018
Deficiency of the co-inhibitory receptor, Programmed cell death receptor (PD)-1, provides a survival benefit in our murine shock/sepsis model for the development of indirect acute respiratory distress syndrome (iARDS). Further, of clinical significance, patients that develop ARDS express increased PD-1 on their blood leukocytes. While PD-1 expression and its regulatory role have been associated with mainly T-cell responses, the contribution of its primary ligand, PD-L1, broadly expressed on non-immune cells such as lung endothelial cells (ECs) as well as immune cells, is less well-understood. Here we show that a \"priming insult\" for iARDS, such as non-lethal hemorrhagic shock alone, produced a marked increase in lung EC PD-L1 as well as blood leukocyte PD-1 expression, and when combined with a subsequent \"trigger event\" (polymicrobial sepsis), not only induced marked iARDS but significant mortality. These sequelae were both attenuated in the absence of PD-L1. Interestingly, we found that gene deficiency of both PD-1 and PD-L1 improved EC barrier function, as measured by decreased bronchoalveolar lavage fluid protein (i.e., lung leak). However, PD-L1 deficiency, unlike PD-1, significantly decreased EC activation through the Angiopoietin/Tie2 pathway in our iARDS mice. Additionally, while PD-1 gene deficiency was associated with decreased neutrophil influx in our iARDS mice, EC monolayers derived from PD-L1 deficient mice showed increased expression of EC junction proteins in response to
TNF-α stimulation. Together, these data suggest that ligation of PD-1:PD-L1 may play a novel role(s) in the maintenance of pulmonary EC barrier regulation, beyond that of the classic regulation of the leukocyte tolerogenic immune response, which may account for its pathogenic actions in iARDS.
Journal Article
Modulating the Biologic Activity of Mesenteric Lymph after Traumatic Shock Decreases Systemic Inflammation and End Organ Injury
by
Raul Coimbra
,
Simone Langness
,
Brian P. Eliceiri
in
2.1 Biological and endogenous factors
,
Acute Lung Injury
,
Acute Lung Injury - metabolism
2016
Trauma/hemorrhagic shock (T/HS) causes the release of pro-inflammatory mediators into the mesenteric lymph (ML), triggering a systemic inflammatory response and acute lung injury (ALI). Direct and pharmacologic vagal nerve stimulation prevents gut barrier failure and alters the biologic activity of ML after injury. We hypothesize that treatment with a pharmacologic vagal agonist after T/HS would attenuate the biologic activity of ML and prevent ALI.
ML was collected from male Sprague-Dawley rats after T/HS, trauma-sham shock (T/SS) or T/HS with administration of the pharmacologic vagal agonist CPSI-121. ML samples from each experimental group were injected into naïve mice to assess biologic activity. Blood samples were analyzed for changes in STAT3 phosphorylation (pSTAT3). Lung injury was characterized by histology, permeability and immune cell recruitment.
T/HS lymph injected in naïve mice caused a systemic inflammatory response characterized by hypotension and increased circulating monocyte pSTAT3 activity. Injection of T/HS lymph also resulted in ALI, confirmed by histology, lung permeability and increased recruitment of pulmonary macrophages and neutrophils to lung parenchyma. CPSI-121 attenuated T/HS lymph-induced systemic inflammatory response and ALI with stable hemodynamics and similar monocyte pSTAT3 levels, lung histology, lung permeability and lung immune cell recruitment compared to animals injected with lymph from T/SS.
Treatment with CPSI-121 after T/HS attenuated the biologic activity of the ML and decreased ALI. Given the superior clinical feasibility of utilizing a pharmacologic approach to vagal nerve stimulation, CPSI-121 is a potential treatment strategy to limit end organ dysfunction after injury.
Journal Article
Extracellular CIRP activates STING to exacerbate hemorrhagic shock
by
Aziz, Monowar
,
Chen, Kehong
,
Cagliani, Joaquin
in
Acute Lung Injury - immunology
,
Acute Lung Injury - pathology
,
Animals
2021
Stimulator of IFN genes (STING) activates TANK-binding kinase 1 (TBK1) and IFN regulatory factor 3 (IRF3) to produce type I IFNs. Extracellular cold-inducible RNA-binding protein (eCIRP) is released from cells during hemorrhagic shock (HS). We hypothesized that eCIRP activates STING to induce inflammation and acute lung injury (ALI) after HS. WT and STING-/- mice underwent controlled hemorrhage by bleeding, followed by fluid resuscitation. Blood and lungs were collected at 4 hours after resuscitation. Serum ALT, AST, LDH, IL-6, and IFN-β were significantly decreased in STING-/- mice compared with WT mice after HS. In STING-/- mice, the levels of pTBK1 and pIRF3, and expression of TNF-α, IL-6, and IL-1β mRNAs and proteins in the lungs, were significantly decreased compared with WT HS mice. The 10-day mortality rate in STING-/- mice was significantly reduced. I.v. injection of recombinant mouse CIRP (rmCIRP) in STING-/- mice showed a significant decrease in pTBK1 and pIRF3 and in IFN-α and IFN-β mRNAs and proteins in the lungs compared with rmCIRP-treated WT mice. Treatment of TLR4-/-, MyD88-/-, and TRIF-/- macrophages with rmCIRP significantly decreased pTBK1 and pIRF3 levels and IFN-α and IFN-β mRNAs and proteins compared with WT macrophages. HS increases eCIRP levels, which activate STING through TLR4/MyD88/TRIF pathways to exacerbate inflammation.
Journal Article
Stellate Ganglion Block Improves the Proliferation and Function of Splenic CD4 + T Cells Through Inhibition of Posthemorrhagic Shock Mesenteric Lymph–Mediated Autophagy
by
Yin Meng
,
Hui-Bo, Du
,
Zhan-Kuang, Liu
in
1-Phosphatidylinositol 3-kinase
,
AKT protein
,
Autophagy
2021
Abstract—Severe hemorrhagic shock leads to excessive inflammation and immune dysfunction, which results in high mortality related to mesenteric lymph return. A recent study showed that stellate ganglion block (SGB) increased the survival rate in rats suffering hemorrhagic shock. However, whether SGB ameliorates immune dysfunction induced by hemorrhagic shock remains unknown. The aim of the present study was to verify the favorable effects of SGB on the proliferation and function of splenic CD4 + T cells isolated from rats that underwent hemorrhagic shock and to investigate the mechanism related to the SGB interaction with autophagy and posthemorrhagic shock mesenteric lymph (PHSML). Male rats underwent SGB or sham SGB and conscious acute hemorrhage followed by resuscitation and multiple treatments. After 3 h of resuscitation, splenic CD4 + T cells were isolated to measure proliferation and cytokine production following stimulation with ConA in vitro. CD4 + T cells isolated from normal rats were treated with PHSML drained from SBG-treated rats, and proliferation, cytokine production, and autophagy biomarkers were detected. Hemorrhagic shock reduced CD4 + T cell proliferation and production of interleukin (IL)-2, IL-4, and tumor necrosis factor-α–induced protein 8–like 2 (TIPE2). SGB or administration of the autophagy inhibitor 3-methyladenine (3-MA) normalized these indicators. In contrast, administration of rapamycin (RAPA) autophagy agonist or intravenous injection of PHSML inhibited the beneficial effects of SGB on CD4 + T cells from hemorrhagic shocked rats. Furthermore, PHSML incubation decreased proliferation and cytokine production, increased LC3 II/I and Beclin-1 expression, and reduced p-PI3K and p-Akt expression in normal CD4 + T cells. These adverse effects of PHSML were also abolished by 3-MA administration, as well as incubation with PHSML obtained from SGB-treated rats. SGB improves splenic CD4 + T cell function following hemorrhagic shock, which is related to the inhibition of PHSML-mediated autophagy.
Journal Article
Hemorrhagic Shock Shifts the Serum Cytokine Profile from Pro- to Anti-Inflammatory after Experimental Traumatic Brain Injury in Mice
by
Exo, Jennifer L.
,
Bayır, Hülya
,
Jackson, Edwin K.
in
Animals
,
Brain damage
,
Brain Injuries - complications
2014
Secondary insults, such as hemorrhagic shock (HS), worsen outcome from traumatic brain injury (TBI). Both TBI and HS modulate levels of inflammatory mediators. We evaluated the addition of HS on the inflammatory response to TBI. Adult male C57BL6J mice were randomized into five groups (n=4 [naïve] or 8/group): naïve; sham; TBI (through mild-to-moderate controlled cortical impact [CCI] at 5 m/sec, 1-mm depth), HS; and CCI+HS. All non-naïve mice underwent identical monitoring and anesthesia. HS and CCI+HS underwent a 35-min period of pressure-controlled hemorrhage (target mean arterial pressure, 25–27 mm Hg) and a 90-min resuscitation with lactated Ringer's injection and autologous blood transfusion. Mice were sacrificed at 2 or 24 h after injury. Levels of 13 cytokines, six chemokines, and three growth factors were measured in serum and in five brain tissue regions. Serum levels of several proinflammatory mediators (eotaxin, interferon-inducible protein 10 [IP-10], keratinocyte chemoattractant [KC], monocyte chemoattractant protein 1 [MCP-1], macrophage inflammatory protein 1alpha [MIP-1α], interleukin [IL]-5, IL-6, tumor necrosis factor alpha, and granulocyte colony-stimulating factor [G-CSF]) were increased after CCI alone. Serum levels of fewer proinflammatory mediators (IL-5, IL-6, regulated upon activation, normal T-cell expressed, and secreted, and G-CSF) were increased after CCI+HS. Serum level of anti-inflammatory IL-10 was significantly increased after CCI+HS versus CCI alone. Brain tissue levels of eotaxin, IP-10, KC, MCP-1, MIP-1α, IL-6, and G-CSF were increased after both CCI and CCI+HS. There were no significant differences between levels after CCI alone and CCI+HS in any mediator. Addition of HS to experimental TBI led to a shift toward an anti-inflammatory serum profile—specifically, a marked increase in IL-10 levels. The brain cytokine and chemokine profile after TBI was minimally affected by the addition of HS.
Journal Article