Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
211
result(s) for
"Skin Friction Drag Reduction"
Sort by:
Dimples for Skin-Friction Drag Reduction: Status and Perspectives
by
Gattere, Federica
,
Chiarini, Alessandro
,
Quadrio, Maurizio
in
Aerodynamic drag
,
Aeronautics
,
Bluff bodies
2022
Dimples are small concavities imprinted on a flat surface, known to affect heat transfer and also flow separation and aerodynamic drag on bluff bodies when acting as a standard roughness. Recently, dimples have been proposed as a roughness pattern that is capable of reducing the turbulent drag of a flat plate by providing a reduction of skin friction that compensates the dimple-induced pressure drag and leads to a global benefit. The question whether dimples do actually work to reduce friction drag is still unsettled. In this paper, we provide a comprehensive review of the available information, touching upon the many parameters that characterize the problem. A number of reasons that contribute to explaining the contrasting literature information are discussed. We also provide guidelines for future studies by highlighting key methodological steps required for a meaningful comparison between a flat and dimpled surface in view of drag reduction.
Journal Article
Turbulent boundary layer under the control of different schemes
2017
This work explores experimentally the control of a turbulent boundary layer over a flat plate based on wall perturbation generated by piezo-ceramic actuators. Different schemes are investigated, including the feed-forward, the feedback, and the combined feed-forward and feedback strategies, with a view to suppressing the near-wall high-speed events and hence reducing skin friction drag. While the strategies may achieve a local maximum drag reduction slightly less than their counterpart of the open-loop control, the corresponding duty cycles are substantially reduced when compared with that of the open-loop control. The results suggest a good potential to cut down the input energy under these control strategies. The fluctuating velocity, spectra, Taylor microscale and mean energy dissipation are measured across the boundary layer with and without control and, based on the measurements, the flow mechanism behind the control is proposed.
Journal Article
Investigation on the Mechanism of Drag Modification over Triangular Riblets
2020
This paper presents experimental and numerical investigations on the modification of local spanwise skinfriction over triangular riblets under the total drag reduction condition. Specifically, the mean and fluctuating vortical flow fields were measured using 2-components X-wires and computed using LES, respectively. Besides, the relationship between local skin-friction along the riblet spanwise and associated vortex evolution was also built using the vortex dynamic method. Based on these results, it was found that, compared with the smooth case, the impaired and enhanced vortex strength, and resultant viscous diffusion/energy dissipation, determined the reduction and augment of the viscous drag force over the local spanwise riblet groove, i.e., decreasing and increasing cases of local drag, respectively. Furthermore, the mean normal diffusion fluxes of normal and spanwise vorticities contributed more to the viscous drag under these two cases. Correspondingly, the relevant flow physics related to these phenomena was discussed in detail.
Journal Article
Investigating Flat Plate Drag Reduction Using Taguchi Robust Design
2015
Research has shown when a rectangular cylinder is located near a flat plate, the flat plate skin friction coefficient changes as a function of the rectangular aspect ratio, gap height between the rectangular and flat plate, distance of rectangular from the flat plate leading edge, and speed of free stream. However, there is no comprehensive experimental study on the comparison of the results of the flat plate skin friction coefficient for all the interactions between effective variables in the presence and absence of the obstacle. On the other hand, testing all possible combinations of effective variables will not be reasonable. In this paper, maximum and minimum ratios of the flat plate skin friction coefficients with and without the rectangular cylinder were determined using robust Taguchi design. Design of experiments method was applied for decreasing the number of experiments without losing the required information in the first step. Then, experimentation was done in a wind tunnel, the maximum speed of which was 13 m/s. Finally, the flat plate skin friction coefficient was optimized using Taguchi method and Minitab software. Results showed that presence of the rectangular cylinder near the flat plate decreased the average skin friction coefficient of the flat plate for all the possible combinations of the effective variables. Additionally, maximum value of the flat plate skin friction reduction was about 40%.
Journal Article
Characterization of superhydrophobic surfaces for drag reduction in turbulent flow
2018
A significant amount of the fuel consumed by marine vehicles is expended to overcome skin-friction drag resulting from turbulent boundary layer flows. Hence, a substantial reduction in this frictional drag would notably reduce cost and environmental impact. Superhydrophobic surfaces (SHSs), which entrap a layer of air underwater, have shown promise in reducing drag in small-scale applications and/or in laminar flow conditions. Recently, the efficacy of these surfaces in reducing drag resulting from turbulent flows has been shown. In this work we examine four different, mechanically durable, large-scale SHSs. When evaluated in fully developed turbulent flow, in the height-based Reynolds number range of 10 000 to 30 000, significant drag reduction was observed on some of the surfaces, dependent on their exact morphology. We then discuss how neither the roughness of the SHSs, nor the conventional contact angle goniometry method of evaluating the non-wettability of SHSs at ambient pressure, can predict their drag reduction under turbulent flow conditions. Instead, we propose a new characterization parameter, based on the contact angle hysteresis at higher pressure, which aids in the rational design of randomly rough, friction-reducing SHSs. Overall, we find that both the contact angle hysteresis at higher pressure, and the non-dimensionalized surface roughness, must be minimized to achieve meaningful turbulent drag reduction. Further, we show that even SHSs that are considered hydrodynamically smooth can cause significant drag increase if these two parameters are not sufficiently minimized.
Journal Article
Skin-friction reduction using periodic blowing through streamwise slits
2021
Active skin-friction reduction in a turbulent boundary layer (TBL) is experimentally studied based on time-periodic blowing through one array of streamwise slits. The control parameters investigated include the blowing amplitude A+ and frequency f+, which, expressed in wall units, range from 0 to 2 and from 0.007 to 0.56, respectively. The maximum local friction reduction downstream of the slits reaches more than 70 %; friction does not fully recover to the state of the natural TBL until 500 wall units behind the slits. A positive net power saving is possible, and 4.01 % is measured with a local friction drag reduction (DR) of 49 %. A detailed analysis based on hot-wire, particle image velocimetry and smoke-wire flow visualization data is performed to understand the physical mechanisms involved. Spectral analysis indicates weakened near-wall large-scale structures. Flow visualizations show stabilized streaky structures and a locally relaminarized flow. Two factors are identified to contribute to the DR. Firstly, the jets from the slits create streamwise vortices in the near-wall region, preventing the formation of near-wall streaks and interrupting the turbulence generation cycle. Secondly, the zero-streamwise-momentum fluid associated with the jets also accounts for the DR. A closed-loop opposing control system is developed, along with an open-loop desynchronized control scheme, to quantify the two contributions. The latter is found to account for 77 % of the DR, whereas the former is responsible for 23 %. An empirical scaling of the DR is also proposed, which provides valuable insight into the TBL control physics.
Journal Article
Superhydrophobic drag reduction in high-speed towing tank
2021
As far as plastron is sustained, superhydrophobic (SHPo) surfaces are expected to reduce skin-friction drag in any flow conditions including large-scale turbulent boundary-layer flows of marine vessels. However, despite many successful drag reductions reported using laboratory facilities, the plastron on SHPo surfaces was persistently lost in high-Reynolds-number flows on open water, and no reduction has been reported until a recent study using certain microtrench SHPo surfaces underneath a boat (Xu et al., Phys. Rev. Appl., vol. 13, no. 3, 2020, 034056). Since scientific studies with controlled flows are difficult with a boat on ocean water, in this paper we test similar SHPo surfaces in a high-speed towing tank, which provides well-controlled open-water flows, by developing a novel $0.7\\ \\textrm {m} \\times 1.4\\ \\textrm {m}$ towing plate, which subjects a $4\\ \\textrm {cm} \\times 7\\ \\textrm {cm}$ sample to the high-Reynolds-number flows of the plate. In addition to the 7 cm long microtrenches, trenches divided into two in length are also tested and reveal an improvement. The skin-friction drag ratio relative to a smooth surface is found to be decreasing with increasing Reynolds number, down to 73 % (i.e. 27 % drag reduction) at $Re_x\\sim 8\\times 10^6$, before starting to increase at higher speeds. For a given gas fraction, the trench width non-dimensionalized to the viscous length scale is found to govern the drag reduction, in agreement with previous numerical results.
Journal Article
Machine-learning-based feedback control for drag reduction in a turbulent channel flow
2020
One of the successful feedback controls for skin-friction drag reduction designed by Choi et al. (J. Fluid Mech., vol. 262, 1994, pp. 75–110), called ‘opposition control’, has a limitation in application because the sensors need to be placed slightly away from the wall, i.e. at $y^+ = 10$, and measure the instantaneous wall-normal velocity. In the present study we train convolutional neural networks using the database of uncontrolled turbulent channel flow at $Re_{\\tau } = 178$ to extract the spatial distributions of the wall shear stresses and pressure that closely represent the wall-normal velocity at $y^+ = 10$. The correlations between the predicted wall-normal velocities at $y^+ = 10$ from the wall-variable distributions and true ones are very high, and they are 0.92, 0.96 and 0.96 for the streamwise and spanwise wall shear stresses and pressure, respectively. We perform feedback controls of turbulent channel flow with instantaneous blowing and suction determined by the trained convolutional neural networks from the measured wall-variable distributions. The predicted wall-normal velocities during the controls have higher energy at small to intermediate scales than the true ones, which degrades the control performance in skin-friction drag reduction. By applying a low-pass filter to the predicted wall-normal velocities to remove those scales, we reduce skin-friction drag by up to 18 % whose amount is comparable to that by opposition control. The convolutional neural networks trained at $Re_{\\tau } = 178$ are also applied to a higher Reynolds number flow ($Re_{\\tau } = 578$), and provide a successful skin-friction drag reduction of 15 %.
Journal Article
Reinforcement learning of control strategies for reducing skin friction drag in a fully developed turbulent channel flow
by
Hasegawa, Yosuke
,
Liu, Zhuchen
,
Itoh, Toshitaka
in
Artificial neural networks
,
Blowing rate
,
Channel flow
2023
Reinforcement learning is applied to the development of control strategies in order to reduce skin friction drag in a fully developed turbulent channel flow at a low Reynolds number. Motivated by the so-called opposition control (Choi et al., J. Fluid Mech., vol. 253, 1993, pp. 509–543), in which a control input is applied so as to cancel the wall-normal velocity fluctuation on a detection plane at a certain distance from the wall, we consider wall blowing and suction as a control input, and its spatial distribution is determined by the instantaneous streamwise and wall-normal velocity fluctuations at distance 15 wall units above the wall. A deep neural network is used to express the nonlinear relationship between the sensing information and the control input, and it is trained so as to maximize the expected long-term reward, i.e. drag reduction. When only the wall-normal velocity fluctuation is measured and a linear network is used, the present framework reproduces successfully the optimal linear weight for the opposition control reported in a previous study (Chung & Talha, Phys. Fluids, vol. 23, 2011, 025102). In contrast, when a nonlinear network is used, more complex control strategies based on the instantaneous streamwise and wall-normal velocity fluctuations are obtained. Specifically, the obtained control strategies switch abruptly between strong wall blowing and suction for downwelling of a high-speed fluid towards the wall and upwelling of a low-speed fluid away from the wall, respectively. Extracting key features from the obtained policies allows us to develop novel control strategies leading to drag reduction rates as high as 37 %, which is higher than the 23 % achieved by the conventional opposition control at the same Reynolds number. Finding such an effective and nonlinear control policy is quite difficult by relying solely on human insights. The present results indicate that reinforcement learning can be a novel framework for the development of effective control strategies through systematic learning based on a large number of trials.
Journal Article
Influence of riblet shapes on the occurrence of Kelvin–Helmholtz rollers
2021
We investigate turbulent flow over streamwise-aligned riblets (grooves) of various shapes and sizes. Small riblets with spacings of typically less than $20$ viscous units are known to reduce skin-friction drag compared to a smooth wall, but larger riblets allow inertial-flow mechanisms to appear and cause drag reduction to break down. One of these mechanisms is a Kelvin–Helmholtz instability that García-Mayoral & Jiménez (J. Fluid Mech., vol. 678, 2011, pp. 317–347) identified in turbulent flow over blade riblets. In order to evaluate its dependence on riblet shape and thus gain a broader understanding of the underlying physics, we generate an extensive data set comprising 21 cases using direct numerical simulations of fully developed minimal-span channel flow. The data set contains six riblet shapes of varying sizes between maximum drag reduction and significant drag increase. Comparing the flow fields over riblets to that over a smooth wall, we find that in this data set only large sharp-triangular and blade riblets have a drag penalty associated with the Kelvin–Helmholtz instability and that the mechanism appears to be absent for blunt-triangular and trapezoidal riblets of any size. We therefore investigate two indicators for the occurrence of Kelvin–Helmholtz rollers in turbulent flow over riblets. First, we confirm for all six riblet shapes that the groove cross-sectional area in viscous units serves as a proxy for the wall-normal permeability that is necessary for the development of Kelvin–Helmholtz rollers. Additionally, we find that the occurrence of the instability correlates with a high momentum absorption at the riblet tips. The momentum absorption can be qualitatively predicted using Stokes flow.
Journal Article