Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1,437
result(s) for
"Sparse representation"
Sort by:
Exploiting Multi-View SAR Images for Robust Target Recognition
2017
The exploitation of multi-view synthetic aperture radar (SAR) images can effectively improve the performance of target recognition. However, due to the various extended operating conditions (EOCs) in practical applications, some of the collected views may not be discriminative enough for target recognition. Therefore, each of the input views should be examined before being passed through to multi-view recognition. This paper proposes a novel structure for multi-view SAR target recognition. The multi-view images are first classified by sparse representation-based classification (SRC). Based on the output residuals, a reliability level is calculated to evaluate the effectiveness of a certain view for multi-view recognition. Meanwhile, the support samples for each view selected by SRC collaborate to construct an enhanced local dictionary. Then, the selected views are classified by joint sparse representation (JSR) based on the enhanced local dictionary for target recognition. The proposed method can eliminate invalid views for target recognition while enhancing the representation capability of JSR. Therefore, the individual discriminability of each valid view as well as the inner correlation among all of the selected views can be exploited for robust target recognition. Experiments are conducted on the moving and stationary target acquisition recognition (MSTAR) dataset to demonstrate the validity of the proposed method.
Journal Article
A novel DOA estimation method for an antenna array under strong interference
2022
Strong interference will affect direction of arrival (DOA) estimation of weak desired signal and even cause DOA estimation failure. This paper investigates the weak signal DOA estimation for an antenna array under strong interference signals, and proposed a novel DOA estimation method for strong interference source suppression and weighted l1-norm sparse representation. A parallel adaptive beamforming algorithm based on power inversion is used to suppress strong interference and form new array data. To reduce spurious peaks in the spectrum under strong interference, a weighted matrix is determined by the optimized subspace algorithm for the subspace projection. Then, the DOA estimation, which is calculated by weighted l1-norm sparse representation, is formed by the weighted matrix and new array data. In this paper, the superiority of the proposed algorithm is illustrated by an example of unmanned aerial vehicle (UAV) video signal DOA estimation under strong interference signals. The simulated results of an orthogonal frequency division multiplexing signal indicate that the proposed algorithm shows merits of fewer snapshots, a sharper main lobe, a lower average noise spectrum value, higher DOA estimation accuracy and success rate. For validation, an outdoor experiment was conducted which demonstrated that the proposed algorithm is superior to other algorithms and can be used for DOA estimation of UAV video signals under strong WiFi interference. Both the simulations and experiments verify that the proposed algorithm can effectively suppress strong interference and achieve better DOA estimation performance for weak signals.
Journal Article
A Sparsity-Promoted Method Based on Majorization-Minimization for Weak Fault Feature Enhancement
2018
Fault transient impulses induced by faulty components in rotating machinery usually contain substantial interference. Fault features are comparatively weak in the initial fault stage, which renders fault diagnosis more difficult. In this case, a sparse representation method based on the Majorzation-Minimization (MM) algorithm is proposed to enhance weak fault features and extract the features from strong background noise. However, the traditional MM algorithm suffers from two issues, which are the choice of sparse basis and complicated calculations. To address these challenges, a modified MM algorithm is proposed in which a sparse optimization objective function is designed firstly. Inspired by the Basis Pursuit (BP) model, the optimization function integrates an impulsive feature-preserving factor and a penalty function factor. Second, a modified Majorization iterative method is applied to address the convex optimization problem of the designed function. A series of sparse coefficients can be achieved through iterating, which only contain transient components. It is noteworthy that there is no need to select the sparse basis in the proposed iterative method because it is fixed as a unit matrix. Then the reconstruction step is omitted, which can significantly increase detection efficiency. Eventually, envelope analysis of the sparse coefficients is performed to extract weak fault features. Simulated and experimental signals including bearings and gearboxes are employed to validate the effectiveness of the proposed method. In addition, comparisons are made to prove that the proposed method outperforms the traditional MM algorithm in terms of detection results and efficiency.
Journal Article
Polarimetric Contextual Classification of PolSAR Images Using Sparse Representation and Superpixels
2014
In recent years, sparse representation-based techniques have shown great potential for pattern recognition problems. In this paper, the problem of polarimetric synthetic aperture radar (PolSAR) image classification is investigated using sparse representation-based classifiers (SRCs). We propose to take advantage of both polarimetric information and contextual information by combining sparsity-based classification methods with the concept of superpixels. Based on polarimetric feature vectors constructed by stacking a variety of polarimetric signatures and a superpixel map, two strategies are considered to perform polarimetric-contextual classification of PolSAR images. The first strategy starts by classifying the PolSAR image with pixel-wise SRC. Then, spatial regularization is imposed on the pixel-wise classification map by using majority voting within superpixels. In the second strategy, the PolSAR image is classified by taking superpixels as processing elements. The joint sparse representation-based classifier (JSRC) is employed to combine the polarimetric information contained in feature vectors and the contextual information provided by superpixels. Experimental results on real PolSAR datasets demonstrate the feasibility of the proposed approaches. It is proven that the classification performance is improved by using contextual information. A comparison with several other approaches also verifies the effectiveness of the proposed approach.
Journal Article
Research on Multipath Suppression Method of Satellite Navigation Signal Based on Sparse Representation in The Background of Artificial Intelligent
by
Xu, Chengtao
,
Ma, Chunjiang
,
Liu, Zhe
in
Artificial Intelligent
,
Greedy algorithms
,
Iterative methods
2021
In radar signal processing, radar target parameter estimation is one of the important tasks of radar target detection. Multipath effect is one of the main error sources of satellite navigation system. In the existing research, the method based on maximum likelihood estimation criterion is considered as the best multipath suppression technology, but its calculation is particularly complicated when there are multiple signals and the number of paths is unknown. This paper mainly studies the application of sparse representation theory in radar target parameter estimation, taking Doppler frequency estimation as an example. The sparse model of Doppler frequency estimation is established, and the frequency estimation is carried out by the classical greedy iterative reconstruction algorithm, and high resolution is obtained. In this paper, a variable step-size fitting algorithm is adopted, which is simple and practical, has little computation, is independent of multipath number, is easy to realize and is easy for real-time signal processing.
Journal Article
Fast kernel sparse representation based classification for Undersampling problem in face recognition
2020
We propose a fast kernel sparse representation based classification (SRC) for undersampling problem, i.e., each class has very few training samples, in face recognition. The proposed algorithm exploits a nonlinear mapping to map the data from the original input space into a high-dimensional feature space. Then, it performs very fast sparse representation and classification of samples in this space. Similar to the typical SRC methods, the proposed approach is based on the L1 norm minimization, whose direct solution can be very time-consuming. In order to improve the computational efficiency, our method uses the coordinate descent method in the feature space, which can avoid directly solving the L1 norm minimization problem, and significantly expedites the computational procedure. Compared with other SRC methods based on the L1 norm minimization, our proposed method achieves very high computational efficiency, without significantly degrading the classification performance. Several experiments on popular face databases demonstrate that our method is a promising efficient kernel SRC based method.
Journal Article
A new steganography algorithm based on video sparse representation
2020
Steganography has been a great interest since long time ago. There are a lot of methods that have been widely used since long past. Recently, there has been a growing interest in the use of sparse representation in signal processing. Sparse representation can efficiently model signals in different applications to facilitate processing. Much of the previous work was focused on image and audio sparse representation for steganography. In this paper, a new steganography scheme based on video sparse representation (VSR) is proposed. To exploit proper dictionary, KSVD algorithm is applied to DCT coefficients of Y component related to video (cover) frames. Both I and Q components of video frames are used for secure message insertion. The aim is to hide secret messages into non-zero coefficients of sparse representation of DCT called, I and Q video frames. Several experiments are performed to evaluate the performance of the proposed algorithm, in case of some metrics such as pick signal to noise ratio (PSNR), the hiding ratio (HR), bit error rate (BER) and similarity (Sim) of secret message, and also runtime. The simulation results show that the proposed method exhibits appropriate invisibility and robustness.
Journal Article
Classification based on sparse representations of attributes derived from empirical mode decomposition in a multiclass problem of motor imagery in EEG signals
by
Gomes, Juliana Carneiro
,
de Carvalho Hazin, Vitor
,
Dantas, Júlio César Sousa
in
Accuracy
,
Biological and Medical Physics
,
Biomedical Engineering and Bioengineering
2023
Purpose
The non-stationary nature of the EEG signal poses challenges for the classification of motor imagery. Sparse Representation Classification (SRC) appears as an alternative for classification of untrained conditions and, therefore, useful in motor imagery. Empirical Mode Decomposition (EMD) deals with signals of this nature and appears at the rear of the classification, supporting the generation of attributes.
Methods
In this work we evaluate the combination of these methods in a multiclass classification problem, comparing them with a conventional method in order to determine if their performance is regular. For comparison with SRC we use Multilayer Perceptron (MLP). We also evaluated a hybrid approach for classification of sparse representations with MLP (RSMLP). For comparison with EMD we used filtering by frequency bands. Attribute selection methods were used to select the most significant ones, specifically Random Forest and Particle Swarm Optimization. Finally, we used data augmentation to get a more voluminous base.
Results
Regarding the first dataset, we observed that the classifiers that use sparse representation have results equivalent to each other, but they outperform the conventional MLP model. The SRC achieves an average accuracy of 83.07% while the MLP is 71.71%, representing a gain of over 15.84%. The use of EMD in relation to other attribute processing techniques is not superior. However, EMD does not influence negatively, there is an opportunity for improvement. Finally, the use of data augmentation proved to be important to obtain relevant results. In the second dataset, we did not observe the same results. Models based on sparse representation (SRC, SRMLP etc.) do not achieve the performance of other conventional models. The best sparse models achieve an average accuracy of 66.7% among the subjects in the base, while other models reach 76.05%.
Conclusion
The improvement of self-adaptive mechanisms that respond efficiently to the user’s context is a good way to achieve improvements in motor imagery applications. However, other scenarios should be investigated, since the advantage of these methods was not proven in all datasets studied. There is still room for improvement, such as optimizing the dictionary of sparse representation in the context of motor imagery. Investing efforts in synthetically increasing the training base has also proved important to reduce the costs of this group of applications.
Journal Article
Review of Sparse Representation-Based Classification Methods on EEG Signal Processing for Epilepsy Detection, Brain-Computer Interface and Cognitive Impairment
2016
At present, the sparse representation-based classification (SRC) has become an important approach in electroencephalograph (EEG) signal analysis, by which the data is sparsely represented on the basis of a fixed dictionary or learned dictionary and classified based on the reconstruction criteria. SRC methods have been used to analyze the EEG signals of epilepsy, cognitive impairment and brain computer interface (BCI), which made rapid progress including the improvement in computational accuracy, efficiency and robustness. However, these methods have deficiencies in real-time performance, generalization ability and the dependence of labeled sample in the analysis of the EEG signals. This mini review described the advantages and disadvantages of the SRC methods in the EEG signal analysis with the expectation that these methods can provide the better tools for analyzing EEG signals.
Journal Article
Robust face recognition via low-rank sparse representation-based classification
2015
Face recognition has attracted great interest due to its importance in many real-world applications. In this paper, we present a novel low-rank sparse representation-based classification (LRSRC) method for robust face recognition. Given a set of test samples, LRSRC seeks the lowest-rank and sparsest representation matrix over all training samples. Since low-rank model can reveal the subspace structures of data while sparsity helps to recognize the data class, the obtained test sample representations are both representative and discriminative. Using the representation vector of a test sample, LRSRC classifies the test sample into the class which generates minimal reconstruction error. Experimental results on several face image databases show the effectiveness and robustness of LRSRC in face image recognition.
Journal Article