Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Classification based on sparse representations of attributes derived from empirical mode decomposition in a multiclass problem of motor imagery in EEG signals
by
Gomes, Juliana Carneiro
, de Carvalho Hazin, Vitor
, Dantas, Júlio César Sousa
, Rodrigues, Marcelo Cairrão Araújo
, de Menezes, José Antonio Alves
, dos Santos, Wellington Pinheiro
in
Accuracy
/ Biological and Medical Physics
/ Biomedical Engineering and Bioengineering
/ Biomedicine
/ Biophysics
/ Classification
/ Computational Biology/Bioinformatics
/ Context
/ Data augmentation
/ Datasets
/ Electroencephalography
/ Engineering
/ Frequencies
/ Image classification
/ Medicine/Public Health
/ Methods
/ Multilayer perceptrons
/ Original Paper
/ Particle swarm optimization
/ Prostheses
/ R & D/Technology Policy
/ Representations
2023
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Classification based on sparse representations of attributes derived from empirical mode decomposition in a multiclass problem of motor imagery in EEG signals
by
Gomes, Juliana Carneiro
, de Carvalho Hazin, Vitor
, Dantas, Júlio César Sousa
, Rodrigues, Marcelo Cairrão Araújo
, de Menezes, José Antonio Alves
, dos Santos, Wellington Pinheiro
in
Accuracy
/ Biological and Medical Physics
/ Biomedical Engineering and Bioengineering
/ Biomedicine
/ Biophysics
/ Classification
/ Computational Biology/Bioinformatics
/ Context
/ Data augmentation
/ Datasets
/ Electroencephalography
/ Engineering
/ Frequencies
/ Image classification
/ Medicine/Public Health
/ Methods
/ Multilayer perceptrons
/ Original Paper
/ Particle swarm optimization
/ Prostheses
/ R & D/Technology Policy
/ Representations
2023
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Classification based on sparse representations of attributes derived from empirical mode decomposition in a multiclass problem of motor imagery in EEG signals
by
Gomes, Juliana Carneiro
, de Carvalho Hazin, Vitor
, Dantas, Júlio César Sousa
, Rodrigues, Marcelo Cairrão Araújo
, de Menezes, José Antonio Alves
, dos Santos, Wellington Pinheiro
in
Accuracy
/ Biological and Medical Physics
/ Biomedical Engineering and Bioengineering
/ Biomedicine
/ Biophysics
/ Classification
/ Computational Biology/Bioinformatics
/ Context
/ Data augmentation
/ Datasets
/ Electroencephalography
/ Engineering
/ Frequencies
/ Image classification
/ Medicine/Public Health
/ Methods
/ Multilayer perceptrons
/ Original Paper
/ Particle swarm optimization
/ Prostheses
/ R & D/Technology Policy
/ Representations
2023
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Classification based on sparse representations of attributes derived from empirical mode decomposition in a multiclass problem of motor imagery in EEG signals
Journal Article
Classification based on sparse representations of attributes derived from empirical mode decomposition in a multiclass problem of motor imagery in EEG signals
2023
Request Book From Autostore
and Choose the Collection Method
Overview
Purpose
The non-stationary nature of the EEG signal poses challenges for the classification of motor imagery. Sparse Representation Classification (SRC) appears as an alternative for classification of untrained conditions and, therefore, useful in motor imagery. Empirical Mode Decomposition (EMD) deals with signals of this nature and appears at the rear of the classification, supporting the generation of attributes.
Methods
In this work we evaluate the combination of these methods in a multiclass classification problem, comparing them with a conventional method in order to determine if their performance is regular. For comparison with SRC we use Multilayer Perceptron (MLP). We also evaluated a hybrid approach for classification of sparse representations with MLP (RSMLP). For comparison with EMD we used filtering by frequency bands. Attribute selection methods were used to select the most significant ones, specifically Random Forest and Particle Swarm Optimization. Finally, we used data augmentation to get a more voluminous base.
Results
Regarding the first dataset, we observed that the classifiers that use sparse representation have results equivalent to each other, but they outperform the conventional MLP model. The SRC achieves an average accuracy of 83.07% while the MLP is 71.71%, representing a gain of over 15.84%. The use of EMD in relation to other attribute processing techniques is not superior. However, EMD does not influence negatively, there is an opportunity for improvement. Finally, the use of data augmentation proved to be important to obtain relevant results. In the second dataset, we did not observe the same results. Models based on sparse representation (SRC, SRMLP etc.) do not achieve the performance of other conventional models. The best sparse models achieve an average accuracy of 66.7% among the subjects in the base, while other models reach 76.05%.
Conclusion
The improvement of self-adaptive mechanisms that respond efficiently to the user’s context is a good way to achieve improvements in motor imagery applications. However, other scenarios should be investigated, since the advantage of these methods was not proven in all datasets studied. There is still room for improvement, such as optimizing the dictionary of sparse representation in the context of motor imagery. Investing efforts in synthetically increasing the training base has also proved important to reduce the costs of this group of applications.
Publisher
Springer Berlin Heidelberg,Springer Nature B.V
This website uses cookies to ensure you get the best experience on our website.