Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
26
result(s) for
"String models History."
Sort by:
A brief history of string theory : from dual models to M-theory
2014
This book offers a lively survey of the forty-year history of string theory, focusing on how what has been called both a 'theory of everything' and a 'theory of nothing' came to exist, and how it came to occupy its present position in physics.
A Role for the Fauxrizon in the Semiclassical Limit of a Fuzzball
2024
Recent work on the status of astrophysical modeling in the wake of quantum gravity indicates that a “fauxrizon” (a portmanteau of faux horizon ), such as is relevant to understanding astrophysical black holes according to the fuzzball proposal within string theory, might ultimately solve the familiar black hole evaporation paradox. I clarify, with general upshots for the foundations of quantum gravity research, some of what this suggestion would amount to: identification of intertheoretic constraints on global spacetime structure in (observer-relative) semiclassical models of fuzzballs.
Journal Article
What Scientific Theories Could Not Be
by
Halvorson, Hans
in
Epistemology. Philosophy of science. Theory of knowledge
,
Equivalence
,
Equivalence relation
2012
According to the semantic view of scientific theories, theories are classes of models. I show that this view—if taken literally—leads to absurdities. In particular, this view equates theories that are distinct, and it distinguishes theories that are equivalent. Furthermore, the semantic view lacks the resources to explicate interesting theoretical relations, such as embeddability of one theory into another. The untenability of the semantic view—as currently formulated—threatens to undermine scientific structuralism.
Journal Article
The quantum theory of gravitation, effective field theories, and strings: yesterday and today
2024
This paper analyzes the effective field theory perspective on modern physics through the lens of the quantum theory of gravitational interaction. The historical part argues that the search for a theory of quantum gravity stimulated the change in outlook that characterizes the modern approach to the standard model of particle physics and general relativity. We present some landmarks covering a long period, i.e., from the beginning of the 1930s until 1994, when, according to Steven Weinberg, the modern bottom–up approach to general relativity began. Starting from the first attempt to apply the quantum field theory techniques to quantize Einstein’s theory perturbatively, we explore its developments and interaction with the top–down approach encoded by string theory. In the last part of the paper, we focus on this last approach to describe the relationship between our modern understanding of string theory and effective field theory in today’s panorama. To this end, the non-historical part briefly explains the modern concepts of moduli stabilization and Swampland to understand another change in focus that explains the present framework where some string theorists move.
Journal Article
The (A)temporal Emergence of Spacetime
by
Huggett, Nick
,
Wüthrich, Christian
in
Astronomical models
,
Big bang cosmology
,
Big Bang theory
2018
This article examines two cosmological models of quantum gravity (from string theory and loop quantum gravity) to investigate the foundational and conceptual issues arising from quantum treatments of the big bang. While the classical singularity is erased, the quantum evolution that replaces it may not correspond to classical spacetime: it may instead be a nonspatiotemporal region that somehow transitions to a spatiotemporal state. The different kinds of transition involved are partially characterized, the concept of a physical transition without time is investigated, and the problem of empirical incoherence for regions without spacetime is discussed.
Journal Article
sQFT: An Autonomous Explanation of the Interactions of Quantum Particles
by
Gracia-Bondía, J. M.
,
Cardoso, L. T.
,
Schroer, B.
in
Causality
,
Classical and Quantum Gravitation
,
Classical Mechanics
2024
Successful applications of a conceptually novel setup of Quantum Field Theory, that accounts for all subtheories of the Standard Model (QED, Electroweak Interaction and Higgs, Yang–Mills and QCD) and beyond (Helicity 2), call for a perspective view in a broader conceptual context. The setting is “autonomous” in the sense of being intrinsically quantum. Its principles are: Hilbert space, Poincaré symmetry and causality. Its free quantum fields are obtained from Wigner’s unitary representations of the Poincaré group, with only physical and observable degrees of freedom. A “quantization” of an “underlying” classical theory is not needed. It allows renormalizable perturbation theory with interactions whose detailed structure, and in some cases even the particle content, is predicted by internal consistency. The results confirm and extend observable predictions for the interactions of the Standard Model without assuming a “principle” of gauge invariance.
Journal Article
String Theory and the Scientific Method
2013
String theory has played a highly influential role in theoretical physics for nearly three decades and has substantially altered our view of the elementary building principles of the Universe. However, the theory remains empirically unconfirmed, and is expected to remain so for the foreseeable future. So why do string theorists have such a strong belief in their theory? This book explores this question, offering a novel insight into the nature of theory assessment itself. Dawid approaches the topic from a unique position, having extensive experience in both philosophy and high-energy physics. He argues that string theory is just the most conspicuous example of a number of theories in high-energy physics where non-empirical theory assessment has an important part to play. Aimed at physicists and philosophers of science, the book does not use mathematical formalism and explains most technical terms.
The Birth of String Theory
by
Cappelli, Andrea
,
Colomo, Filippo
,
Di Vecchia, P. (Paolo)
in
Duality (Nuclear physics)
,
String models
2012
String theory is currently the best candidate for a unified theory of all forces and all forms of matter in nature. As such, it has become a focal point for physical and philosophical discussions. This unique book explores the history of the theory's early stages of development, as told by its main protagonists. The book journeys from the first version of the theory (the so-called dual resonance model) in the late sixties, as an attempt to describe the physics of strong interactions outside the framework of quantum field theory, to its reinterpretation around the mid-seventies as a quantum theory of gravity unified with the other forces, and its successive developments up to the superstring revolution in 1984. Providing important background information to current debates on the theory, this book is essential reading for students and researchers in physics, as well as historians and philosophers of science.
On the Implications and Extensions of Luk’s Theory and Model of Scientific Study
2018
Recently, Luk tried to establish a model and a theory of scientific studies. He focused on articulating the theory and the model, but he did not emphasize relating them to some issues in philosophy of science. In addition, they might explain some of the issues in philosophy of science, but such explanation is not articulated in his papers. This paper explores the implications and extensions of Luk’s work in philosophy of science or science in general.
Journal Article
Mutation Accumulation May Be a Minor Force in Shaping Life History Traits
by
Dańko, Maciej Jan
,
Kozłowski, Jan
,
Vaupel, James Walton
in
Accumulation
,
Adaptation, Physiological - genetics
,
Aging
2012
Is senescence the adaptive result of tradeoffs between younger and older ages or the nonadaptive burden of deleterious mutations that act at older ages? To shed new light on this unresolved question we combine adaptive and nonadaptive processes in a single model. Our model uses Penna's bit-strings to capture different age-specific mutational patterns. Each pattern represents a genotype and for each genotype we find the life history strategy that maximizes fitness. Genotypes compete with each other and are subject to selection and to new mutations over generations until equilibrium in gene-frequencies is reached. The mutation-selection equilibrium provides information about mutational load and the differential effects of mutations on a life history trait--the optimal age at maturity. We find that mutations accumulate only at ages with negligible impact on fitness and that mutation accumulation has very little effect on the optimal age at maturity. These results suggest that life histories are largely determined by adaptive processes. The non-adaptive process of mutation accumulation seems to be unimportant at evolutionarily relevant ages.
Journal Article