Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
1 result(s) for "TaSnRK3.23B"
Sort by:
TaSnRK3.23B, a CBL-interacting protein kinase of wheat, confers drought stress tolerance by promoting ROS scavenging in Arabidopsis
Background Sucrose non-fermenting-1-related protein kinases (SnRKs) have been implicated in plant growth and stress responses. Although SnRK3.23 is known to be involved in drought stress, the underlying mechanism of resistance differs between Arabidopsis and rice, and little is known about its function in wheat. Results In the current work, TaSnRK3.23B was detected on the cell membrane and in the nucleus. TaSnRK3.23B overexpression in Arabidopsis promoted reactive oxygen species (ROS) scavenging via the accumulation of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) and then conferred significant tolerance to drought. The prediction analysis, yeast two-hybrid, and bimolecular fluorescence complementation (BiFC) assays revealed that TaSnRK3.23B interacted with TaCBL2B and TaCBL6B, which are calcineurin B-like (CBL) proteins. The predicted model demonstrated that TaSnRK3 subfamily proteins participate in Ca 2+ signaling mediated by TaCBL2B/TaCBL6B and subsequently provide drought stress tolerance by promoting ROS scavenging in wheat. Conclusions Altogether, the obtained findings contribute to a better understanding of the functions of SnRK3.23 in wheat and offer genetic suggestions for improving drought resistance of wheat.