Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
2,787 result(s) for "Thermomechanical analysis"
Sort by:
Cure Kinetics Modeling of a High Glass Transition Temperature Epoxy Molding Compound (EMC) Based on Inline Dielectric Analysis
We report on the cure characterization, based on inline monitoring of the dielectric parameters, of a commercially available epoxy phenol resin molding compound with a high glass transition temperature (>195 °C), which is suitable for the direct packaging of electronic components. The resin was cured under isothermal temperatures close to general process conditions (165–185 °C). The material conversion was determined by measuring the ion viscosity. The change of the ion viscosity as a function of time and temperature was used to characterize the cross-linking behavior, following two separate approaches (model based and isoconversional). The determined kinetic parameters are in good agreement with those reported in the literature for EMCs and lead to accurate cure predictions under process-near conditions. Furthermore, the kinetic models based on dielectric analysis (DEA) were compared with standard offline differential scanning calorimetry (DSC) models, which were based on dynamic measurements. Many of the determined kinetic parameters had similar values for the different approaches. Major deviations were found for the parameters linked to the end of the reaction where vitrification phenomena occur under process-related conditions. The glass transition temperature of the inline molded parts was determined via thermomechanical analysis (TMA) to confirm the vitrification effect. The similarities and differences between the resulting kinetics models of the two different measurement techniques are presented and it is shown how dielectric analysis can be of high relevance for the characterization of the curing reaction under conditions close to series production.
Comprehensive Evaluation and Analysis of Aging Performance of Polymer-Rich Anchoring Adhesives
In civil engineering, with the increasing demand for structural reinforcement and renovation projects, polymer-rich anchoring adhesives have attracted much attention due to their performance advantage of having high strength and have become a key factor in ensuring the safety and durability of buildings. In this study, polymer-rich anchoring adhesives underwent three artificial aging treatments (alkali medium, hygrothermal, and water bath) to evaluate their aging performance. Alkali treatment reduced bending strength by up to 70% (sample 5#) within 500 h before stabilizing, while hygrothermal and water-curing treatments caused reductions of 16–51% and 15–77%, respectively, depending on adhesive composition. Dynamic thermomechanical analysis revealed significant loss factor decreases (e.g., epoxy adhesives dropped from >1.0 to stable lower values after 500 h aging), indicating increased rigidity. Infrared spectroscopy confirmed chemical degradation, including ester group breakage in vinyl ester resins (peak shifts at 1700 cm−1 and 1100 cm−1) and molecular chain scission in unsaturated polyesters. The three test methods consistently demonstrated that 500 h of aging sufficiently captured performance trends, with alkali exposure causing the most severe degradation in sensitive formulations (e.g., samples 5# and 6#). These results can be used to establish quantitative benchmarks for adhesive durability assessment in structural applications.
Thermomechanical Characterization of Glass Fiber- and Basalt Fiber-Reinforced Plastics
The paper discusses measurement problems of heat deflection and glass transition temperatures of fiber-reinforced plastics by the Martens test and thermomechanical analysis (TMA). By using the Martens test, thermomechanical profiles were obtained for an epoxy binder and glass fiber- (GFRP) and basalt fiber-reinforced (BFRP) plastics under load ranging from 5 to 75 MPa. The onset temperature of severe deformation of GFRP and BFRP was found to be 15–20°С higher than that of the epoxy binder they were made of. GFRP and BFRP were tested by TMA in the lengthwise and crosswise fiber orientations. In crosswise measurement, TMA curves showed two noticeable inflection points corresponding to two thermal transitions. This can be explained by the cured binder being present in two states in the composites. The interfacial layer contiguous to the fibers had a lower glass transition temperature (Tg) than the matrix layer located in the interfibrous space; moreover, Tg of the composites under flexural load was similar to that of the matrix.
Thermomechanical finite element simulation and correlation analysis for orthogonal cutting of normalized AISI 9310 steels
A coupled thermomechanical finite element analysis is performed in order to simulate orthogonal cutting of normalized AISI 9310. Damage parameters are optimized to define the behavior of the material subjected to orthogonal cutting. AISI 1045, AISI 4140, and A2024-T351 are selected as precursors to validating the present finite element approach for orthogonal cutting of normalized AISI 9310. The numerical results obtained in this study include the average cutting force, residual stresses and strains, chip morphology, and tool temperature. These results are validated for each material with experimental results found in literature. The current study optimizes the Johnson–Cook damage parameters for steel materials in order to capture physical chip morphology. A correlation analysis is then performed using the validated finite element model for the AISI 9310 material to better understand the effect of specific input parameters such as the damage parameters, coefficient of friction, fracture energy, heat generation fractions and tool velocity on output results such as stresses and strains in the workpiece, chip thickness ratio and tool temperature. This analysis provides input-output relations for a physically reasonable range of input parameters and supports that the damage parameters, coefficient of friction, and fracture energy have a very strong influence on the residual stresses and strains, and the chip morphology. The coefficient of friction has a strong influence of tool temperature. Correlation analysis results can help manufacturers in understanding the nature of residual stresses and distortion, and in choosing optimized process parameters suitable for and applicable to the specific workpiece material. Tool wear that is observed in actual cutting of normalized AISI 9310 is also discussed. This study will benefit the manufacturing industry with the understanding of how specific cutting processing parameters will impact the distortions and residual stresses in the machined AISI 9310 parts.
The viscoelasticity and deformation mechanism of Taxodium hybrid ‘Zhongshanshan’ wood by dynamic mechanical analysis
The viscoelasticity of Taxodium hybrid ‘Zhongshanshan’ wood, while undergoing hydrothermal processing, was investigated via dynamic thermomechanical analysis. The results showed that the elastic deformation and viscous deformation of the Taxodium hybrid ‘Zhongshanshan’ heartwood were greater than the sapwood. The heartwood average storage modulus and average loss modulus were greater than the sapwood. The difference between the heartwood and sapwood had little effect on the average glass transition temperature of their hemicellulose, which was approximately 74 °C. The radial average storage modulus was greater than the tangential, and the difference between the average loss modulus in the radial and tangential directions was negligible. The average glass transition temperature in the radial direction was slightly lower than the tangential direction. As the moisture content increased, the average storage modulus and its average hemicellulose glass transition temperature decreased. The average glass transition temperature tended to be lower as the moisture content increased. This study revealed the structural deformation and molecular movement of Taxodium hybrid ‘Zhongshanshan’ wood, while undergoing hydrothermal processing; this has important theoretical value for understanding its characteristics as well as its rational and efficient usage.
Dynamic thermomechanical analysis on composite sandwich plates with damage
The dynamic thermomechanical analysis on composite sandwich plates with damage is investigated in this paper. A thermomechanical extended layerwise/soild-element (TELW/SE) method is developed for sandwich plates. In the TELW/SE method, the thermomechanical extended layerwise theory is used to model the behavior of the laminated composite facesheets, while the thermomechanical eight-node solid element is employed to discretize the cores. The total governing equations are assembled by using the interface conditions, to ensure the compatibility of displacements and temperature, and the equilibrium of internal force. In the numerical examples, the dynamic thermomechanical analysis is carried out for the sandwich plates with one or two layer honeycombs cores, taking the delaminations, transverse crack and debonding at core/facesheets interface into account. The proposed method is validated by using three-dimensional elastic models developed in commercial finite element softwares Comsol and Abaqus, and good agreement is achieved. Several typical damage in composite sandwich plates can be described finely in the proposed method.
Application of isogeometric analysis in the coupled thermo-mechanical field of functionally graded materials
Isogeometric analysis (IGA) has gained prominence in the investigation of FGMs applied to structural problems, owing to its ability to precisely represent complex geometries and significantly improve solution accuracy. This research employs NURBS-based isogeometric analysis to systematically investigate the stability response of FGM plates under combined thermomechanical loading. The proposed framework integrates FSDT with von Kármán’s nonlinear strain assumptions, enabling accurate characterization of large deflection behavior in FGM structures. Through numerical discussion, we verify the accuracy of the model for FGM plate prediction, providing an effective tool for analyzing its behavior in the thermo-mechanical coupling field.
Experimental Investigation and Constitutive Modeling of the Uncured Rubber Compound Based on the DMA Strain Scanning Method
Existing research tends to focus on the performance of cured rubber. This is due to a lack of suitable testing methods for the mechanical properties of uncured rubber, in particular, tensile properties. Without crosslinking by sulfur, the tensile strength of uncured rubber compounds is too low to be accurately tested by general tensile testing machines. Firstly, a new tensile stress testing method for uncured rubber was established by using dynamic thermomechanical analysis (DMA) tensile strain scanning. The strain amplitude was increased under a set frequency and constant temperature. The corresponding dynamic force needed to maintain the amplitude was then measured to obtain the dynamic force-amplitude curve observed at this temperature and frequency. Secondly, the Burgers model is usually difficult to calculate and analyze in differential form, so it was reduced to its arithmetic form under creep conditions and material relaxation. Tensile deformation at a constant strain rate was proposed, so the Burgers model could be modified to a more concise form without any strain terms, making mathematical processing and simulating much more convenient. Thirdly, the rate of the modified Burgers model under constant strain was in good agreement with the test data, demonstrating that the elastic stiffness was 1–2 orders of magnitude less than the tensile viscosity. In the end, it was concluded that large data dispersion caused by the universal tensile test can be overcome by choosing this model, and it may become an effective way to study the tensile modeling of uncured rubber compound.
Embedded NiTi Wires for Improved Dynamic Thermomechanical Performance of Silicone Elastomers
The extraordinary properties of shape memory NiTi alloy are combined with the inherent viscoelastic behavior of a silicon elastomer. NiTi wires are incorporated in a silicon elastomer matrix. Benefits include features as electrical/thermal conductivity, reinforcement along with enhanced damping performance and flexibility. To gain more insight of this composite, a comprehensive dynamic thermomechanical analysis is performed and the temperature- as well as frequency-dependent storage modulus and the mechanical loss factor are obtained. The analyses are realized for the composite and single components. Moreover, the models to express the examined properties and their temperature along with the frequency dependencies are also presented.
Numerical and Experimental Study of AlSi Coating Effect on Nugget Size Growth in Resistance Spot Welding of Hot-Stamped Boron Steels
In recent years, increasing automotive safety by improving crashworthiness has been a focal point in the automotive industry, employing high-strength steel such as press hardenable steel (PHS). In addition to the improved strength of individual parts in the body of the vehicle, the strength of the resistance-spot-welded joints of these parts is highly important to obtain a safe structure. In general, dimensions of weld nuggets are regarded as one of the criteria for the quality of spot-welded joints. In the presented research, a three-dimensional axisymmetric finite element model is developed to predict the nugget formation in resistance spot welding (RSW) of two types of PHS: the uncoated and AlSi-coated 1.8 mm boron steel after hot stamping. A fully coupled electro-thermo-mechanical analysis was conducted using the commercial software package Abaqus. The FE predicted weld nugget development is compared with experimental results. The computed weld nugget sizes show good agreement with experimental values.