MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Thermomechanical finite element simulation and correlation analysis for orthogonal cutting of normalized AISI 9310 steels
Thermomechanical finite element simulation and correlation analysis for orthogonal cutting of normalized AISI 9310 steels
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Thermomechanical finite element simulation and correlation analysis for orthogonal cutting of normalized AISI 9310 steels
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Thermomechanical finite element simulation and correlation analysis for orthogonal cutting of normalized AISI 9310 steels
Thermomechanical finite element simulation and correlation analysis for orthogonal cutting of normalized AISI 9310 steels

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Thermomechanical finite element simulation and correlation analysis for orthogonal cutting of normalized AISI 9310 steels
Thermomechanical finite element simulation and correlation analysis for orthogonal cutting of normalized AISI 9310 steels
Journal Article

Thermomechanical finite element simulation and correlation analysis for orthogonal cutting of normalized AISI 9310 steels

2021
Request Book From Autostore and Choose the Collection Method
Overview
A coupled thermomechanical finite element analysis is performed in order to simulate orthogonal cutting of normalized AISI 9310. Damage parameters are optimized to define the behavior of the material subjected to orthogonal cutting. AISI 1045, AISI 4140, and A2024-T351 are selected as precursors to validating the present finite element approach for orthogonal cutting of normalized AISI 9310. The numerical results obtained in this study include the average cutting force, residual stresses and strains, chip morphology, and tool temperature. These results are validated for each material with experimental results found in literature. The current study optimizes the Johnson–Cook damage parameters for steel materials in order to capture physical chip morphology. A correlation analysis is then performed using the validated finite element model for the AISI 9310 material to better understand the effect of specific input parameters such as the damage parameters, coefficient of friction, fracture energy, heat generation fractions and tool velocity on output results such as stresses and strains in the workpiece, chip thickness ratio and tool temperature. This analysis provides input-output relations for a physically reasonable range of input parameters and supports that the damage parameters, coefficient of friction, and fracture energy have a very strong influence on the residual stresses and strains, and the chip morphology. The coefficient of friction has a strong influence of tool temperature. Correlation analysis results can help manufacturers in understanding the nature of residual stresses and distortion, and in choosing optimized process parameters suitable for and applicable to the specific workpiece material. Tool wear that is observed in actual cutting of normalized AISI 9310 is also discussed. This study will benefit the manufacturing industry with the understanding of how specific cutting processing parameters will impact the distortions and residual stresses in the machined AISI 9310 parts.