Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
19,307
result(s) for
"Tissue Engineering and Regenerative Medicine"
Sort by:
The repair and autophagy mechanisms of hypoxia‐regulated bFGF‐modified primary embryonic neural stem cells in spinal cord injury
2020
There is no effective strategy for the treatment of spinal cord injury (SCI), a devastating condition characterized by severe hypoxia and ischemic insults. In this study, we investigated the histology and pathophysiology of the SCI milieu in a rat model and found that areas of hypoxia were unevenly interspersed in compressed SCI. With this new knowledge, we generated embryonic neural stem cells (NSCs) expressing basic fibroblast growth factor (bFGF) under the regulation of five hypoxia‐responsive elements (5HRE) using a lentiviral vector (LV‐5HRE‐bFGF‐NSCs) to specifically target these hypoxic loci. SCI models treated with bFGF expressed by the LV‐5HRE‐bFGF‐NSCs viral vector demonstrated improved recovery, increased neuronal survival, and inhibited autophagy in spinal cord lesions in the rat model due to the reversal of hypoxic conditions at day 42 after injury. Furthermore, improved functional restoration of SCI with neuron regeneration was achieved in vivo, accompanied by glial scar inhibition and the evidence of axon regeneration across the scar boundary. This is the first study to illustrate the presence of hypoxic clusters throughout the injury site of compressed SCI and the first to show that the transplantation of LV‐5HRE‐bFGF‐NSCs to target this hypoxic microenvironment enhanced the recovery of neurological function after SCI in rats; LV‐5HRE‐bFGF‐NSCs may therefore be a good candidate to evaluate cellular SCI therapy in humans.
Embryonic neural stem cells (NSCs) expressing basic fibroblast growth factor (bFGF) under the regulation of five hypoxia responsive elements (5HRE) using a lentiviral vector (LV‐5HRE‐bFGF‐NSCs) to specifically target these hypoxic loci. SCI models treated with bFGF expressed by the LV‐5HRE‐bFGF‐NSCs viral vector demonstrated improved recovery, increased the survival of neurons, and inhibited autophagy in spinal cord lesions in the rat model due to a reversal of hypoxic conditions post‐injury. Furthermore, improved functional restoration of SCI with neuron regeneration was achieved in vivo accompanied by glial scar inhibition and evidence of axon regeneration across the scar boundary.
Journal Article
Concise Review: Multifaceted Characterization of Human Mesenchymal Stem Cells for Use in Regenerative Medicine
2017
Mesenchymal stem cells (MSC) hold great potential for regenerative medicine because of their ability for self‐renewal and differentiation into tissue‐specific cells such as osteoblasts, chondrocytes, and adipocytes. MSCs orchestrate tissue development, maintenance and repair, and are useful for musculoskeletal regenerative therapies to treat age‐related orthopedic degenerative diseases and other clinical conditions. Importantly, MSCs produce secretory factors that play critical roles in tissue repair that support both engraftment and trophic functions (autocrine and paracrine). The development of uniform protocols for both preparation and characterization of MSCs, including standardized functional assays for evaluation of their biological potential, are critical factors contributing to their clinical utility. Quality control and release criteria for MSCs should include cell surface markers, differentiation potential, and other essential cell parameters. For example, cell surface marker profiles (surfactome), bone‐forming capacities in ectopic and orthotopic models, as well as cell size and granularity, telomere length, senescence status, trophic factor secretion (secretome), and immunomodulation, should be thoroughly assessed to predict MSC utility for regenerative medicine. We propose that these and other functionalities of MSCs should be characterized prior to use in clinical applications as part of comprehensive and uniform guidelines and release criteria for their clinical‐grade production to achieve predictably favorable treatment outcomes for stem cell therapy. Stem Cells Translational Medicine 2017;6:2173–2185
Adopting a multifaceted approach for characterizing mesenchymal stem cells (MSCs) is critical for the selection of best‐in‐class cells for therapeutic use. Assaying for surfactome, secretome, self‐renewal, colony formation, trophic factor secretion, and multilineage differentiation, all form part of an assessment of cellular naivety or “stemness.” When this status is combined with functional assays such as immunomodulation, and other key parameters of cellular health that include telomere length, they collectively help provide a robust assessment of characteristics that are increasingly becoming important indicators of clinical efficacy.
Journal Article
Biodegradable materials for bone defect repair
by
Ma, Xin-Long
,
Wei, Shuai
,
Xu, Lai
in
Absorbable Implants - standards
,
Absorbable Implants - trends
,
Biodegradable materials
2020
Compared with non-degradable materials, biodegradable biomaterials play an increasingly important role in the repairing of severe bone defects, and have attracted extensive attention from researchers. In the treatment of bone defects, scaffolds made of biodegradable materials can provide a crawling bridge for new bone tissue in the gap and a platform for cells and growth factors to play a physiological role, which will eventually be degraded and absorbed in the body and be replaced by the new bone tissue. Traditional biodegradable materials include polymers, ceramics and metals, which have been used in bone defect repairing for many years. Although these materials have more or fewer shortcomings, they are still the cornerstone of our development of a new generation of degradable materials. With the rapid development of modern science and technology, in the twenty-first century, more and more kinds of new biodegradable materials emerge in endlessly, such as new intelligent micro-nano materials and cell-based products. At the same time, there are many new fabrication technologies of improving biodegradable materials, such as modular fabrication, 3D and 4D printing, interface reinforcement and nanotechnology. This review will introduce various kinds of biodegradable materials commonly used in bone defect repairing, especially the newly emerging materials and their fabrication technology in recent years, and look forward to the future research direction, hoping to provide researchers in the field with some inspiration and reference.
Journal Article
A review on cell damage, viability, and functionality during 3D bioprinting
2022
Three-dimensional (3D) bioprinting fabricates 3D functional tissues/organs by accurately depositing the bioink composed of the biological materials and living cells. Even though 3D bioprinting techniques have experienced significant advancement over the past decades, it remains challenging for 3D bioprinting to artificially fabricate functional tissues/organs with high post-printing cell viability and functionality since cells endure various types of stress during the bioprinting process. Generally, cell viability which is affected by several factors including the stress and the environmental factors, such as pH and temperature, is mainly determined by the magnitude and duration of the stress imposed on the cells with poorer cell viability under a higher stress and a longer duration condition. The maintenance of high cell viability especially for those vulnerable cells, such as stem cells which are more sensitive to multiple stresses, is a key initial step to ensure the functionality of the artificial tissues/organs. In addition, maintaining the pluripotency of the cells such as proliferation and differentiation abilities is also essential for the 3D-bioprinted tissues/organs to be similar to native tissues/organs. This review discusses various pathways triggering cell damage and the major factors affecting cell viability during different bioprinting processes, summarizes the studies on cell viabilities and functionalities in different bioprinting processes, and presents several potential approaches to protect cells from injuries to ensure high cell viability and functionality.
Journal Article
pHEMA: An Overview for Biomedical Applications
by
Rezvani Ghomi, Erfan
,
Zare, Mina
,
Bigham, Ashkan
in
Anti-Infective Agents - pharmacology
,
Biocompatibility
,
Biomedical engineering
2021
Poly(2-hydroxyethyl methacrylate) (pHEMA) as a biomaterial with excellent biocompatibility and cytocompatibility elicits a minimal immunological response from host tissue making it desirable for different biomedical applications. This article seeks to provide an in-depth overview of the properties and biomedical applications of pHEMA for bone tissue regeneration, wound healing, cancer therapy (stimuli and non-stimuli responsive systems), and ophthalmic applications (contact lenses and ocular drug delivery). As this polymer has been widely applied in ophthalmic applications, a specific consideration has been devoted to this field. Pure pHEMA does not possess antimicrobial properties and the site where the biomedical device is employed may be susceptible to microbial infections. Therefore, antimicrobial strategies such as the use of silver nanoparticles, antibiotics, and antimicrobial agents can be utilized to protect against infections. Therefore, the antimicrobial strategies besides the drug delivery applications of pHEMA were covered. With continuous research and advancement in science and technology, the outlook of pHEMA is promising as it will most certainly be utilized in more biomedical applications in the near future. The aim of this review was to bring together state-of-the-art research on pHEMA and their applications.
Journal Article
Why bioprinting in regenerative medicine should adopt a rational technology readiness assessment
by
O’Connell, Cathal D.
,
Dalton, Paul D.
,
Hutmacher, Dietmar W.
in
Biomaterials
,
Biomedical materials
,
bioprinting
2024
Recent years have seen a surge of interest in the potential use of 3D bioprinting technologies for the development of tissues and organs with the aim of restoring, maintaining, or improving tissue function.Bioprinting studies frequently claim to be close to clinical translation, yet only report research at very early stages of the translational pipeline.Technology readiness levels (TRLs) are a systematic metric used to objectively assess the maturity of a technology, allowing researchers and stakeholders to understand how far a particular project has progressed from the conceptual stage towards clinical application.
Bioprinting is an annex of additive manufacturing, as defined by the American Society for Testing and Materials (ASTM) and International Organization for Standardization (ISO) standards, characterized by the automated deposition of living cells and biomaterials. The tissue engineering and regenerative medicine (TE&RM) community has eagerly adopted bioprinting, while review articles regularly herald its imminent translation to the clinic as functional tissues and organs. Here we argue that such proclamations are premature and counterproductive; they place emphasis on technological progress while typically ignoring the critical stage-gates that must be passed through to bring a technology to market. We suggest the technology readiness level (TRL) scale as a valuable metric for gauging the relative maturity of a bioprinting technology in relation to how it has passed a series of key milestones. We suggest guidelines for a bioprinting-oriented scale and use this to discuss the state-of-the-art of bioprinting in regenerative medicine (BRM) today. Finally, we make corresponding recommendations for improvements to BRM research that would support its progression to clinical translation.
Bioprinting is an annex of additive manufacturing, as defined by the American Society for Testing and Materials (ASTM) and International Organization for Standardization (ISO) standards, characterized by the automated deposition of living cells and biomaterials. The tissue engineering and regenerative medicine (TE&RM) community has eagerly adopted bioprinting, while review articles regularly herald its imminent translation to the clinic as functional tissues and organs. Here we argue that such proclamations are premature and counterproductive; they place emphasis on technological progress while typically ignoring the critical stage-gates that must be passed through to bring a technology to market. We suggest the technology readiness level (TRL) scale as a valuable metric for gauging the relative maturity of a bioprinting technology in relation to how it has passed a series of key milestones. We suggest guidelines for a bioprinting-oriented scale and use this to discuss the state-of-the-art of bioprinting in regenerative medicine (BRM) today. Finally, we make corresponding recommendations for improvements to BRM research that would support its progression to clinical translation.
Journal Article
Mesenchymal Stem Cell‐Derived Extracellular Vesicles as Mediators of Anti‐Inflammatory Effects: Endorsement of Macrophage Polarization
by
Principi, Elisa
,
Bosco, Maria Carla
,
Pozzobon, Michela
in
Advantages
,
Animal welfare
,
Animals
2017
Mesenchymal Stem Cells (MSCs) are effective therapeutic agents enhancing the repair of injured tissues mostly through their paracrine activity. Increasing evidences show that besides the secretion of soluble molecules, the release of extracellular vesicles (EVs) represents an alternative mechanism adopted by MSCs. Since macrophages are essential contributors toward the resolution of inflammation, which has emerged as a finely orchestrated process, the aim of the present study was to carry out a detailed characterization of EVs released by human adipose derived‐MSCs to investigate their involvement as modulators of MSC anti‐inflammatory effects inducing macrophage polarization. The EV‐isolation method was based on repeated ultracentrifugations of the medium conditioned by MSC exposed to normoxic or hypoxic conditions (EVNormo and EVHypo). Both types of EVs were efficiently internalized by responding bone marrow‐derived macrophages, eliciting their switch from a M1 to a M2 phenotype. In vivo, following cardiotoxin‐induced skeletal muscle damage, EVNormo and EVHypo interacted with macrophages recruited during the initial inflammatory response. In injured and EV‐treated muscles, a downregulation of IL6 and the early marker of innate and classical activation Nos2 were concurrent to a significant upregulation of Arg1 and Ym1, late markers of alternative activation, as well as an increased percentage of infiltrating CD206pos cells. These effects, accompanied by an accelerated expression of the myogenic markers Pax7, MyoD, and eMyhc, were even greater following EVHypo administration. Collectively, these data indicate that MSC‐EVs possess effective anti‐inflammatory properties, making them potential therapeutic agents more handy and safe than MSCs. Stem Cells Translational Medicine 2017 Stem Cells Translational Medicine 2017;6:1018–1028
Journal Article
A Review of 3D Polymeric Scaffolds for Bone Tissue Engineering: Principles, Fabrication Techniques, Immunomodulatory Roles, and Challenges
by
Abdalla, Mohga S.
,
Abdal-hay, Abdalla
,
Barhoum, Ahmed
in
3-D printers
,
additive manufacturing
,
Bioengineering
2023
Over the last few years, biopolymers have attracted great interest in tissue engineering and regenerative medicine due to the great diversity of their chemical, mechanical, and physical properties for the fabrication of 3D scaffolds. This review is devoted to recent advances in synthetic and natural polymeric 3D scaffolds for bone tissue engineering (BTE) and regenerative therapies. The review comprehensively discusses the implications of biological macromolecules, structure, and composition of polymeric scaffolds used in BTE. Various approaches to fabricating 3D BTE scaffolds are discussed, including solvent casting and particle leaching, freeze-drying, thermally induced phase separation, gas foaming, electrospinning, and sol–gel techniques. Rapid prototyping technologies such as stereolithography, fused deposition modeling, selective laser sintering, and 3D bioprinting are also covered. The immunomodulatory roles of polymeric scaffolds utilized for BTE applications are discussed. In addition, the features and challenges of 3D polymer scaffolds fabricated using advanced additive manufacturing technologies (rapid prototyping) are addressed and compared to conventional subtractive manufacturing techniques. Finally, the challenges of applying scaffold-based BTE treatments in practice are discussed in-depth.
Journal Article
Concise Review: Stem Cell Therapy for Stroke Patients: Are We There Yet?
2019
Four decades of preclinical research demonstrating survival, functional integration, and behavioral effects of transplanted stem cells in experimental stroke models have provided ample scientific basis for initiating limited clinical trials of stem cell therapy in stroke patients. Although safety of the grafted cells has been overwhelmingly documented, efficacy has not been forthcoming. Two recently concluded stroke clinical trials on mesenchymal stem cells (MSCs) highlight the importance of strict adherence to the basic science findings of optimal transplant regimen of cell dose, timing, and route of delivery in enhancing the functional outcomes of cell therapy. Echoing the Stem Cell Therapeutics as an Emerging Paradigm for Stroke and Stroke Treatment Academic Industry Roundtable call for an NIH‐guided collaborative consortium of multiple laboratories in testing the safety and efficacy of stem cells and their derivatives, not just as stand‐alone but preferably in combination with approved thrombolytic or thrombectomy, may further increase the likelihood of successful fruition of translating stem cell therapy for stroke clinical application. The laboratory and clinical experience with MSC therapy for stroke may guide the future translational research on stem cell‐based regenerative medicine in neurological disorders. Stem Cells Translational Medicine 2019;8:983&988
Lab‐to‐clinic translation of stem cell therapy for stroke. Basic science discoveries have implicated putative mechanisms of action of stem cells, including cell replacement of infarcted or ischemic cells, by‐stander effects such as secretion of growth factors or anti‐inflammatory substances, and transfer of cell components like mitochondria, microvesicles, and microRNAs. These regenerative mechanisms can also be used to prescreen viable and transplantable cells prior to transplantation, as well as to serve as potency assays to monitor stem cell functional status following their transplantation into the ischemic stroke brain.
Journal Article
Concise Review: Periodontal Tissue Regeneration Using Stem Cells: Strategies and Translational Considerations
2019
Periodontitis is a widespread disease characterized by inflammation‐induced progressive damage to the tooth‐supporting structures until tooth loss occurs. The regeneration of lost/damaged support tissue in the periodontium, including the alveolar bone, periodontal ligament, and cementum, is an ambitious purpose of periodontal regenerative therapy and might effectively reduce periodontitis‐caused tooth loss. The use of stem cells for periodontal regeneration is a hot field in translational research and an emerging potential treatment for periodontitis. This concise review summarizes the regenerative approaches using either culture‐expanded or host‐mobilized stem cells that are currently being investigated in the laboratory and with preclinical models for periodontal tissue regeneration and highlights the most recent evidence supporting their translational potential toward a widespread use in the clinic for combating highly prevalent periodontal disease. We conclude that in addition to in vitro cell‐biomaterial design and transplantation, the engineering of biomaterial devices to encourage the innate regenerative capabilities of the periodontium warrants further investigation. In comparison to cell‐based therapies, the use of biomaterials is comparatively simple and sufficiently reliable to support high levels of endogenous tissue regeneration. Thus, endogenous regenerative technology is a more economical and effective as well as safer method for the treatment of clinical patients. Stem Cells Translational Medicine 2019;8:392–403
Periodontal regeneration can potentially be achieved via either the in vitro design of cell‐material constructs that may undergo remodeling and revascularization to integrate with the host tissue following transplantation or based on the in vivo manipulation of the cell‐material interplay at the target site to recruit endogenous stem cells to regenerate new tissues.
Journal Article