Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
125
result(s) for
"Tombusvirus - genetics"
Sort by:
Plant virus-mediated induction of miR168 is associated with repression of ARGONAUTE1 accumulation
2010
Virus infections induce the expression of
ARGONAUTE1
(
AGO1
) mRNA and in parallel enhance the accumulation of miR168 (regulator of
AGO1
mRNA). Here, we show that in virus‐infected plants the enhanced expression of
AGO1
mRNA is not accompanied by increased AGO1 protein accumulation. We also show that the induction of
AGO1
mRNA level is a part of the host defence reaction, whereas the induction of miR168, which overlaps spatially with virus‐occupied sectors, is mediated mainly by the Tombusvirus p19 RNA‐silencing suppressor. The absence of p19 results in the elimination of miR168 induction and accompanied with the enhanced accumulation of AGO1 protein. In transient expression study, p19 mediates the induction of miR168 and the down‐regulation of endogenous AGO1 level. P19 is not able to efficiently bind miR168 in virus‐infected plants, indicating that this activity is uncoupled from the small RNA‐binding capacity of p19. Our results imply that plant viruses can inhibit the translational capacity of
AGO1
mRNA by modulating the endogenous miR168 level to alleviate the anti‐viral function of AGO1 protein.
In response to a viral infection, plants up‐regulate the expression of AGO1 to counter the infection. As part of the viral counter‐defence, the virus leads to the induction of miR168, which inhibits AGO1 mRNA translation.
Journal Article
Noncanonical Role for the Host Vps4 AAA+ ATPase ESCRT Protein in the Formation of Tomato Bushy Stunt Virus Replicase
by
Pogany, Judit
,
Martín, Isabel Fernández de Castro
,
Nagy, Peter D.
in
Adenosine triphosphatase
,
Adenosine Triphosphatases - genetics
,
Adenosine Triphosphatases - metabolism
2014
Assembling of the membrane-bound viral replicase complexes (VRCs) consisting of viral- and host-encoded proteins is a key step during the replication of positive-stranded RNA viruses in the infected cells. Previous genome-wide screens with Tomato bushy stunt tombusvirus (TBSV) in a yeast model host have revealed the involvement of eleven cellular ESCRT (endosomal sorting complexes required for transport) proteins in viral replication. The ESCRT proteins are involved in endosomal sorting of cellular membrane proteins by forming multiprotein complexes, deforming membranes away from the cytosol and, ultimately, pinching off vesicles into the lumen of the endosomes. In this paper, we show an unexpected key role for the conserved Vps4p AAA+ ATPase, whose canonical function is to disassemble the ESCRT complexes and recycle them from the membranes back to the cytosol. We find that the tombusvirus p33 replication protein interacts with Vps4p and three ESCRT-III proteins. Interestingly, Vps4p is recruited to become a permanent component of the VRCs as shown by co-purification assays and immuno-EM. Vps4p is co-localized with the viral dsRNA and contacts the viral (+)RNA in the intracellular membrane. Deletion of Vps4p in yeast leads to the formation of crescent-like membrane structures instead of the characteristic spherule and vesicle-like structures. The in vitro assembled tombusvirus replicase based on cell-free extracts (CFE) from vps4Δ yeast is highly nuclease sensitive, in contrast with the nuclease insensitive replicase in wt CFE. These data suggest that the role of Vps4p and the ESCRT machinery is to aid building the membrane-bound VRCs, which become nuclease-insensitive to avoid the recognition by the host antiviral surveillance system and the destruction of the viral RNA. Other (+)RNA viruses of plants and animals might also subvert Vps4p and the ESCRT machinery for formation of VRCs, which require membrane deformation and spherule formation.
Journal Article
Assembly-hub function of ER-localized SNARE proteins in biogenesis of tombusvirus replication compartment
by
Gonzalez, Paulina Alatriste
,
Kovalev, Nikolay
,
Sasvari, Zsuzsanna
in
Assembly
,
Biology and Life Sciences
,
Biosynthesis
2018
Positive-strand RNA viruses assemble numerous membrane-bound viral replicase complexes within large replication compartments to support their replication in infected cells. Yet the detailed mechanism of how given subcellular compartments are subverted by viruses is incompletely understood. Although, Tomato bushy stunt virus (TBSV) uses peroxisomal membranes for replication, in this paper, we show evidence that the ER-resident SNARE (soluble NSF attachment protein receptor) proteins play critical roles in the formation of active replicase complexes in yeast model host and in plants. Depletion of the syntaxin 18-like Ufe1 and Use1, which are components of the ER SNARE complex in the ERAS (ER arrival site) subdomain, in yeast resulted in greatly reduced tombusvirus accumulation. Over-expression of a dominant-negative mutant of either the yeast Ufe1 or the orthologous plant Syp81 syntaxin greatly interferes with tombusvirus replication in yeast and plants, thus further supporting the role of this host protein in tombusvirus replication. Moreover, tombusvirus RNA replication was low in cell-free extracts from yeast with repressed Ufe1 or Use1 expression. We also present evidence for the mislocalization of the tombusviral p33 replication protein to the ER membrane in Ufe1p-depleted yeast cells. The viral p33 replication protein interacts with both Ufe1p and Use1p and co-opts them into the TBSV replication compartment in yeast and plant cells. The co-opted Ufe1 affects the virus-driven membrane contact site formation, sterol-enrichment at replication sites, recruitment of several pro-viral host factors and subversion of the Rab5-positive PE-rich endosomes needed for robust TBSV replication. In summary, we demonstrate a critical role for Ufe1 and Use1 SNARE proteins in TBSV replication and propose that the pro-viral functions of Ufe1 and Use1 are to serve as assembly hubs for the formation of the extensive TBSV replication compartments in cells. Altogether, these findings point clearly at the ERAS subdomain of ER as a critical site for the biogenesis of the TBSV replication compartment.
Journal Article
Key interplay between the co-opted sorting nexin-BAR proteins and PI3P phosphoinositide in the formation of the tombusvirus replicase
by
Feng, Zhike
,
Nagy, Peter D.
,
Kovalev, Nikolay
in
1-Phosphatidylinositol 3-kinase
,
Alzheimer's disease
,
Arabidopsis - metabolism
2020
Positive-strand RNA viruses replicate in host cells by forming large viral replication organelles, which harbor numerous membrane-bound viral replicase complexes (VRCs). In spite of its essential role in viral replication, the biogenesis of the VRCs is not fully understood. The authors identified critical roles of cellular membrane-shaping proteins and PI(3)P (phosphatidylinositol 3-phosphate) phosphoinositide, a minor lipid with key functions in endosomal vesicle trafficking and autophagosome biogenesis, in VRC formation for tomato bushy stunt virus (TBSV). The authors show that TBSV co-opts the endosomal SNX-BAR (sorting nexin with Bin/Amphiphysin/Rvs- BAR domain) proteins, which bind to PI(3)P and have membrane-reshaping function during retromer tubular vesicle formation, directly into the VRCs to boost progeny viral RNA synthesis. We find that the viral replication protein-guided recruitment and pro-viral function of the SNX-BAR proteins depends on enrichment of PI(3)P at the site of viral replication. Depletion of SNX-BAR proteins or PI(3)P renders the viral double-stranded (ds)RNA replication intermediate RNAi-sensitive within the VRCs in the surrogate host yeast and in planta and ribonuclease-sensitive in cell-free replicase reconstitution assays in yeast cell extracts or giant unilamellar vesicles (GUVs). Based on our results, we propose that PI(3)P and the co-opted SNX-BAR proteins are coordinately exploited by tombusviruses to promote VRC formation and to play structural roles and stabilize the VRCs during viral replication. Altogether, the interplay between the co-opted SNX-BAR membrane-shaping proteins, PI(3)P and the viral replication proteins leads to stable VRCs, which provide the essential protection of the viral RNAs against the host antiviral responses.
Journal Article
Recruitment of Vps34 PI3K and enrichment of PI3P phosphoinositide in the viral replication compartment is crucial for replication of a positive-strand RNA virus
by
Kovalev, Nikolay
,
Feng, Zhike
,
Xu, Kai
in
1-Phosphatidylinositol 3-kinase
,
Antibodies
,
Autophagy
2019
Tombusviruses depend on subversions of multiple host factors and retarget cellular pathways to support viral replication. In this work, we demonstrate that tomato bushy stunt virus (TBSV) and the closely-related carnation Italian ringspot virus (CIRV) recruit the cellular Vps34 phosphatidylinositol 3-kinase (PI3K) into the large viral replication compartment. The kinase function of Vps34 is critical for TBSV replication, suggesting that PI(3)P phosphoinositide is utilized by TBSV for building of the replication compartment. We also observed increased expression of Vps34 and the higher abundance of PI(3)P in the presence of the tombusviral replication proteins, which likely leads to more efficient tombusvirus replication. Accordingly, overexpression of PI(3)P phosphatase in yeast or plants inhibited TBSV replication on the peroxisomal membranes and CIRV replication on the mitochondrial membranes. Moreover, the purified PI(3)P phosphatase reduced TBSV replicase assembly in a cell-free system. Detection of PI(3)P with antibody or a bioprobe revealed the enrichment of PI(3)P in the replication compartment. Vps34 is directly recruited into the replication compartment through interaction with p33 replication protein. Gene deletion analysis in surrogate yeast host unraveled that TBSV replication requires the vesicle transport function of Vps34. In the absence of Vps34, TBSV cannot efficiently recruit the Rab5-positive early endosomes, which provide PE-rich membranes for membrane biogenesis of the TBSV replication compartment. We found that Vps34 and PI(3)P needed for the stability of the p33 replication protein, which is degraded by the 26S proteasome when PI(3)P abundance was decreased by an inhibitor of Vps34. In summary, Vps34 and PI(3)P are needed for providing the optimal microenvironment for the replication of the peroxisomal TBSV and the mitochondrial CIRV.
Journal Article
The retromer is co-opted to deliver lipid enzymes for the biogenesis of lipid-enriched tombusviral replication organelles
by
Feng, Zhike
,
Nagy, Peter D.
,
Inaba, Jun-ichi
in
1-phosphatidylinositol 4-kinase
,
biogenesis
,
Biological Sciences
2021
Biogenesis of viral replication organelles (VROs) is critical for replication of positive-strand RNA viruses. In this work, we demonstrate that tomato bushy stunt virus (TBSV) and the closely related carnation Italian ringspot virus (CIRV) hijack the retromer to facilitate building VROs in the surrogate host yeast and in plants. Depletion of retromer proteins, which are needed for biogenesis of endosomal tubular transport carriers, strongly inhibits the peroxisome-associated TBSV and the mitochondria-associated CIRV replication in yeast and in planta. In vitro reconstitution revealed the need for the retromer for the full activity of the viral replicase. The viral p33 replication protein interacts with the retromer complex, including Vps26, Vps29, and Vps35. We demonstrate that TBSV p33-driven retargeting of the retromer into VROs results in delivery of critical retromer cargoes, such as 1) Psd2 phosphatidylserine decarboxylase, 2) Vps34 phosphatidylinositol 3-kinase (PI3K), and 3) phosphatidylinositol 4-kinase (PI4Kα-like). The recruitment of these cellular enzymes by the co-opted retromer is critical for de novo production and enrichment of phosphatidylethanolamine phospholipid, phosphatidylinositol-3-phosphate [PI(3)P], and phosphatidylinositol-4-phosphate [PI(4)P] phosphoinositides within the VROs. Co-opting cellular enzymes required for lipid biosynthesis and lipid modifications suggest that tombusviruses could create an optimized lipid/membrane microenvironment for efficient VRO assembly and protection of the viral RNAs during virus replication. We propose that compartmentalization of these lipid enzymes within VROs helps tombusviruses replicate in an efficient milieu. In summary, tombusviruses target a major crossroad in the secretory and recycling pathways via coopting the retromer complex and the tubular endosomal network to build VROs in infected cells.
Journal Article
In vitro assembly of the Tomato bushy stunt virus replicase requires the host Heat shock protein 70
by
Pogany, Judit
,
Stork, Jozsef
,
Nagy, Peter D
in
Adenosine Triphosphate - metabolism
,
Biological Sciences
,
cell free system
2008
To gain insights into the functions of a viral RNA replicase, we have assembled in vitro and entirely from nonplant sources, a fully functional replicase complex of Tomato bushy stunt virus (TBSV). The formation of the TBSV replicase required two purified recombinant TBSV replication proteins, which were obtained from E. coli, the viral RNA replicon, rATP, rGTP, and a yeast cell-free extract. The in vitro assembly of the replicase took place in the membraneous fraction of the yeast extract, in which the viral replicase-RNA complex became RNase- and proteinase-resistant. The assembly of the replicase complex required the heat shock protein 70 (Hsp70 = yeast Ssa1/2p) present in the soluble fraction of the yeast cell-free extract. The assembled TBSV replicase performed a complete replication cycle, synthesizing RNA complementary to the provided RNA replicon and using the complementary RNA as template to synthesize new TBSV replicon RNA.
Journal Article
Synergistic infection of two viruses MCMV and SCMV increases the accumulations of both MCMV and MCMV-derived siRNAs in maize
2016
The co-infection of
Maize chlorotic mottle virus
(MCMV) and
Sugarcane mosaic virus
(SCMV) can cause maize lethal necrosis. However, the mechanism underlying the synergistic interaction between these two viruses remains elusive. In this study, we found that the co-infection of MCMV and SCMV increased the accumulation of MCMV. Moreover, the profiles of virus-derived siRNAs (vsiRNAs) from MCMV and SCMV in single- and co-infected maize plants were obtained by high-throughput sequencing. Our data showed that synergistic infection of MCMV and SCMV increased remarkably the accumulation of vsiRNAs from MCMV, which were mainly 22 and 21 nucleotides in length. The single-nucleotide resolution maps of vsiRNAs revealed that vsiRNAs were almost continuously but heterogeneously distributed throughout MCMV and SCMV genomic RNAs, respectively. Moreover, we predicted and annotated dozens of host transcript genes targeted by vsiRNAs. Our results also showed that maize
DCLs
and several
AGOs
RNAs were differentially accumulated in maize plants with different treatments (mock, single or double inoculations), which were associated with the accumulation of vsiRNAs. Our findings suggested possible roles of vsiRNAs in the synergistic interaction of MCMV and SCMV in maize plants.
Journal Article
The centromeric histone CenH3 is recruited into the tombusvirus replication organelles
by
Gonzalez, Paulina Alatriste
,
Nagy, Peter D.
in
Adenosine Triphosphate - metabolism
,
Antibodies
,
Biology and Life Sciences
2022
Tombusviruses, similar to other (+)RNA viruses, exploit the host cells by co-opting numerous host components and rewiring cellular pathways to build extensive virus-induced replication organelles (VROs) in the cytosol of the infected cells. Most molecular resources are suboptimal in susceptible cells and therefore, tomato bushy stunt virus (TBSV) drives intensive remodeling and subversion of many cellular processes. The authors discovered that the nuclear centromeric CenH3 histone variant (Cse4p in yeast, CENP-A in humans) plays a major role in tombusvirus replication in plants and in the yeast model host. We find that over-expression of CenH3 greatly interferes with tombusvirus replication, whereas mutation or knockdown of CenH3 enhances TBSV replication in yeast and plants. CenH3 binds to the viral RNA and acts as an RNA chaperone. Although these data support a restriction role of CenH3 in tombusvirus replication, we demonstrate that by partially sequestering CenH3 into VROs, TBSV indirectly alters selective gene expression of the host, leading to more abundant protein pool. This in turn helps TBSV to subvert pro-viral host factors into replication. We show this through the example of hypoxia factors, glycolytic and fermentation enzymes, which are exploited more efficiently by tombusviruses to produce abundant ATP locally within the VROs in infected cells. Altogether, we propose that subversion of CenH3/Cse4p from the nucleus into cytosolic VROs facilitates transcriptional changes in the cells, which ultimately leads to more efficient ATP generation in situ within VROs by the co-opted glycolytic enzymes to support the energy requirement of virus replication. In summary, CenH3 plays both pro-viral and restriction functions during tombusvirus replication. This is a surprising novel role for a nuclear histone variant in cytosolic RNA virus replication.
Journal Article
The complete genome sequence of Neckar River virus confirms it to be a distinct member of the genus Tombusvirus in the family Tombusviridae
2023
Neckar River virus (NRV), first isolated from a water sample of the Neckar River (Germany) in the 1980s, was serologically characterized as a novel tombusvirus. In this study, the complete genome sequence was determined, and an infectious full-length cDNA clone was constructed. The genome organization of NRV (DSMZ PV-0270) resembles that of tombusviruses. The genome consists of 4739 nucleotides and contains five open reading frames (ORFs) and one additional putative ORF (pX) in the 3’-terminal region. Phylogenetic analysis and sequence comparisons confirmed NRV to be a member of the species Tombusvirus neckarfluminis in the genus Tombusvirus. The infectious full-length cDNA clone was constructed using Gibson assembly and subsequent infection of Nicotiana benthamiana plants by Rhizobium radiobacter inoculation. The virus derived from the full-length cDNA clone caused symptoms resembling those caused by the wild-type virus, but slightly milder.
Journal Article