Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
1,264
result(s) for
"Tool Use Behavior"
Sort by:
Tooling around : crafty creatures and the tools they use
by
Jackson, Ellen, 1943- author
,
Benoit, Renne, illustrator
in
Tool use in animals Juvenile literature.
,
Tool use in animals.
,
Tools.
2014
Simple, rhyming text introduces eleven animals and the surprising tools they use.
Microstratigraphic evidence of in situ fire in the Acheulean strata of Wonderwerk Cave, Northern Cape province, South Africa
by
Horwitz, Liora Kolska
,
Bamford, Marion
,
Berna, Francesco
in
Animals
,
Anthropology
,
Archaeology
2012
The ability to control fire was a crucial turning point in human evolution, but the question when hominins first developed this ability still remains. Here we show that micromorphological and Fourier transform infrared microspectroscopy (mFTIR) analyses of intact sediments at the site of Wonderwerk Cave, Northern Cape province, South Africa, provide unambiguous evidence—in the form of burned bone and ashed plant remains—that burning took place in the cave during the early Acheulean occupation, approximately 1.0 Ma. To the best of our knowledge, this is the earliest secure evidence for burning in an archaeological context.
Journal Article
Tool use in animals : cognition and ecology
\"The last decade has witnessed remarkable discoveries and advances in our understanding of the tool using behaviour of animals. Wild populations of capuchin monkeys have been observed to crack open nuts with stone tools, similar to the skills of chimpanzees and humans. Corvids have been observed to use and make tools that rival in complexity the behaviours exhibited by the great apes. Excavations of the nut cracking sites of chimpanzees have been dated to around 4-5 thousand years ago. Tool Use in Animals collates these and many more contributions by leading scholars in psychology, biology and anthropology, along with supplementary online materials, into a comprehensive assessment of the cognitive abilities and environmental forces shaping these behaviours in taxa as distantly related as primates and corvids\"-- Provided by publisher.
Nut Cracking Tools Used by Captive Chimpanzees (Pan troglodytes) and Their Comparison with Early Stone Age Percussive Artefacts from Olduvai Gorge
2016
We present the results of a series of experiments at the Kumamoto Sanctuary in Japan, in which captive chimpanzees (Pan troglodytes) performed several nut cracking sessions using raw materials from Olduvai Gorge, Tanzania. We examined captive chimpanzee pounding tools using a combination of technological analysis, use-wear distribution, and micro-wear analysis. Our results show specific patterns of use-wear distribution across the active surfaces of pounding tools, which reveal some similarities with traces on archaeological percussive objects from the Early Stone Age, and are consistent with traces on other experimental pounding tools used by modern humans. The approach used in this study may help to stablish a framework with which to interpret archaeological assemblages and improve understanding of use-wear formation processes on pounding tools used by chimpanzees. This study represents the first direct comparison of chimpanzee pounding tools and archaeological material, and thus may contribute to a better understanding of hominin percussive activities.
Journal Article
Early evolution of human memory : great apes, tool-making, and cognition
This work examines the cognitive capacity of great apes in order to better understand early man and the importance of memory in the evolutionary process. It synthesizes research from comparative cognition, neuroscience, primatology as well as lithic archaeology, reviewing findings on the cognitive ability of great apes to recognize the physical properties of an object and then determine the most effective way in which to manipulate it as a tool to achieve a specific goal. The authors argue that apes (Hominoidea) lack the human cognitive ability of imagining how to blend reality, which requires drawing on memory in order to envisage alternative future situations, and thereby modifying behavior determined by procedural memory.
First GIS Analysis of Modern Stone Tools Used by Wild Chimpanzees (Pan troglodytes verus) in Bossou, Guinea, West Africa
2015
Stone tool use by wild chimpanzees of West Africa offers a unique opportunity to explore the evolutionary roots of technology during human evolution. However, detailed analyses of chimpanzee stone artifacts are still lacking, thus precluding a comparison with the earliest archaeological record. This paper presents the first systematic study of stone tools used by wild chimpanzees to crack open nuts in Bossou (Guinea-Conakry), and applies pioneering analytical techniques to such artifacts. Automatic morphometric GIS classification enabled to create maps of use wear over the stone tools (anvils, hammers, and hammers/ anvils), which were blind tested with GIS spatial analysis of damage patterns identified visually. Our analysis shows that chimpanzee stone tool use wear can be systematized and specific damage patterns discerned, allowing to discriminate between active and passive pounders in lithic assemblages. In summary, our results demonstrate the heuristic potential of combined suites of GIS techniques for the analysis of battered artifacts, and have enabled creating a referential framework of analysis in which wild chimpanzee battered tools can for the first time be directly compared to the early archaeological record.
Journal Article
Rats’ (Rattus norvegicus) tool manipulation ability exceeds simple patterned behavior
2019
Many studies have attempted to shed light on the ability of non-human animals to understand physical causality by investigating their tool-use behavior. This study aimed to develop a tool-manipulation task for rodents in which the subjects could not manipulate the tool in the direction of the reward by simple patterned behavior. Eight rats had to use a rake-shaped tool to obtain a food reward placed beyond their reach. During the training, the rats never moved the rakes laterally to obtain the reward. However, in the positional discrimination test, the rake was placed at the center of the experimental apparatus, and the reward was positioned on either the left or right side of the rake. Interestingly, this test indicated that some rats were able to manipulate the rake toward the reward without relying on a patterned behavior acquired during the training. These results suggested that rats have the primitive ability to understand causal relationships in the physical environment. The findings indicate that rats can potentially serve as an animal model to investigate the mechanisms of evolution and development of the understanding of physical causality in humans.
Journal Article
Functional mastery of percussive technology in nut-cracking and stone-flaking actions: experimental comparison and implications for the evolution of the human brain
2012
Various authors have suggested behavioural similarities between tool use in early hominins and chimpanzee nut cracking, where nut cracking might be interpreted as a precursor of more complex stone flaking. In this paper, we bring together and review two separate strands of research on chimpanzee and human tool use and cognitive abilities. Firstly, and in the greatest detail, we review our recent experimental work on behavioural organization and skill acquisition in nut-cracking and stone-knapping tasks, highlighting similarities and differences between the two tasks that may be informative for the interpretation of stone tools in the early archaeological record. Secondly, and more briefly, we outline a model of the comparative neuropsychology of primate tool use and discuss recent descriptive anatomical and statistical analyses of anthropoid primate brain evolution, focusing on cortico-cerebellar systems. By juxtaposing these two strands of research, we are able to identify unsolved problems that can usefully be addressed by future research in each of these two research areas.
Journal Article
Responses of mirror neurons in area F5 to hand and tool grasping observation
by
Rizzolatti, Giacomo
,
Rochat, Magali J
,
Jezzini, Ahmad
in
Action Potentials
,
Action Potentials - physiology
,
Animals
2010
Mirror neurons are a distinct class of neurons that discharge both during the execution of a motor act and during observation of the same or similar motor act performed by another individual. However, the extent to which mirror neurons coding a motor act with a specific goal (e.g., grasping) might also respond to the observation of a motor act having the same goal, but achieved with artificial effectors, is not yet established. In the present study, we addressed this issue by recording mirror neurons from the ventral premotor cortex (area F5) of two monkeys trained to grasp objects with pliers. Neuron activity was recorded during the observation and execution of grasping performed with the hand, with pliers and during observation of an experimenter spearing food with a stick. The results showed that virtually all neurons responding to the observation of hand grasping also responded to the observation of grasping with pliers and, many of them to the observation of spearing with a stick. However, the intensity and pattern of the response differed among conditions. Hand grasping observation determined the earliest and the strongest discharge, while pliers grasping and spearing observation triggered weaker responses at longer latencies. We conclude that F5 grasping mirror neurons respond to the observation of a family of stimuli leading to the same goal. However, the response pattern depends upon the similarity between the observed motor act and the one executed by the hand, the natural motor template.
Journal Article
Movement Pattern Variability in Stone Knapping: Implications for the Development of Percussive Traditions
2014
The earliest direct evidence for tool-use by our ancestors are 2.6 million year old stone tools from Africa. These earliest artifacts show that, already, early hominins had developed the required advanced movement skills and cognitive capacities to manufacture stone tools. Currently, it is not well understood, however, which specific movement skills are required for successful stone knapping and accordingly it is unknown how these skills emerged during early hominin evolution. In particular, it is not clear which striking movements are indicative of skilled performance, how striking movement patterns vary with task and environmental constraints, and how movement patterns are passed on within social groups. The present study addresses these questions by investigating striking movement patterns and striking variability in 18 modern stone knappers (nine experienced and nine novices). The results suggest that no single movement pattern characterizes successful stone knapping. Participants showed large inter-individual movement variability of the elementary knapping action irrespective of knapping experience and knapping performance. Changes in task- and environmental constraints led knappers to adapt their elementary striking actions using a combination of individual and common strategies. Investigation of striking pattern similarities within social groups showed only partial overlap of striking patterns across related individuals. The results therefore suggest that striking movement patterns in modern stone knappers are largely specific to the individual and movement variability is not indicative of knapping performance. The implications of these results for the development of percussive traditions are discussed.
Journal Article