Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
70
result(s) for
"Transcription Factor TFIIIB - metabolism"
Sort by:
Structural basis of RNA polymerase III transcription initiation
by
Vannini, Alessandro
,
Ramsay, Ewan Phillip
,
Morris, Edward
in
101/28
,
631/337/1644
,
631/337/572
2018
RNA polymerase (Pol) III transcribes essential non-coding RNAs, including the entire pool of transfer RNAs, the 5S ribosomal RNA and the U6 spliceosomal RNA, and is often deregulated in cancer cells. The initiation of gene transcription by Pol III requires the activity of the transcription factor TFIIIB to form a transcriptionally active Pol III preinitiation complex (PIC). Here we present electron microscopy reconstructions of Pol III PICs at 3.4–4.0 Å and a reconstruction of unbound apo-Pol III at 3.1 Å. TFIIIB fully encircles the DNA and restructures Pol III. In particular, binding of the TFIIIB subunit Bdp1 rearranges the Pol III-specific subunits C37 and C34, thereby promoting DNA opening. The unwound DNA directly contacts both sides of the Pol III cleft. Topologically, the Pol III PIC resembles the Pol II PIC, whereas the Pol I PIC is more divergent. The structures presented unravel the molecular mechanisms underlying the first steps of Pol III transcription and also the general conserved mechanisms of gene transcription initiation.
Detailed structures of yeast RNA polymerase III and its initiation complex shed light on how the transcription of essential non-coding RNAs begins and allow comparisons with other RNA polymerases.
Structures of RNA polymerase III pre-initiation complex
RNA polymerase III (Pol III) catalyses the transcription of short RNAs, including transfer RNAs and the 5S ribosomal RNA, which are essential for protein synthesis during cell growth. Pol III is predominantly regulated at the level of transcription initiation, and dysregulated Pol III activity is linked to diseases including cancer. Two independent studies in this issue, by Alessandro Vannini and colleagues and Christoph Müller and colleagues, describe electron cryo-microscopy structures of the yeast Pol III preinitiation complex, comprising the full 17-subunit Pol III and the three TFIIIB subunits (TBP, Brf1 and Bdp1) bound to promoter DNA in various functional states. The structures reveal the detailed mechanisms that underlie how Pol III is recruited to its target promoters and how promoter DNA is opened to form a stable transcription bubble, and also allow a comparison with the structures of Pol I and Pol II preinitiation complexes.
Journal Article
Molecular mechanism of promoter opening by RNA polymerase III
2018
RNA polymerase III (Pol III) and transcription factor IIIB (TFIIIB) assemble together on different promoter types to initiate the transcription of small, structured RNAs. Here we present structures of Pol III preinitiation complexes, comprising the 17-subunit Pol III and the heterotrimeric transcription factor TFIIIB, bound to a natural promoter in different functional states. Electron cryo-microscopy reconstructions, varying from 3.7 Å to 5.5 Å resolution, include two early intermediates in which the DNA duplex is closed, an open DNA complex, and an initially transcribing complex with RNA in the active site. Our structures reveal an extremely tight, multivalent interaction between TFIIIB and promoter DNA, and explain how TFIIIB recruits Pol III. Together, TFIIIB and Pol III subunit C37 activate the intrinsic transcription factor-like activity of the Pol III-specific heterotrimer to initiate the melting of double-stranded DNA, in a mechanism similar to that of the Pol II system.
Cryo-EM structures of Pol III preinitiation complexes are presented, comprising Pol III and the transcription factor TFIIIB bound to a natural promoter in different functional states.
Structures of RNA polymerase III pre-initiation complex
RNA polymerase III (Pol III) catalyses the transcription of short RNAs, including transfer RNAs and the 5S ribosomal RNA, which are essential for protein synthesis during cell growth. Pol III is predominantly regulated at the level of transcription initiation, and dysregulated Pol III activity is linked to diseases including cancer. Two independent studies in this issue, by Alessandro Vannini and colleagues and Christoph Müller and colleagues, describe electron cryo-microscopy structures of the yeast Pol III preinitiation complex, comprising the full 17-subunit Pol III and the three TFIIIB subunits (TBP, Brf1 and Bdp1) bound to promoter DNA in various functional states. The structures reveal the detailed mechanisms that underlie how Pol III is recruited to its target promoters and how promoter DNA is opened to form a stable transcription bubble, and also allow a comparison with the structures of Pol I and Pol II preinitiation complexes.
Journal Article
Structural basis for RNA polymerase III transcription repression by Maf1
by
Willis, Ian M
,
Vorländer, Matthias K
,
Müller, Christoph W
in
Binding sites
,
DNA-directed RNA polymerase
,
Gene silencing
2020
Maf1 is a conserved inhibitor of RNA polymerase III (Pol III) that influences phenotypes ranging from metabolic efficiency to lifespan. Here, we present a 3.3-Å-resolution cryo-EM structure of yeast Maf1 bound to Pol III, establishing that Maf1 sequesters Pol III elements involved in transcription initiation and binds the mobile C34 winged helix 2 domain, sealing off the active site. The Maf1 binding site overlaps with that of TFIIIB in the preinitiation complex.A 3.3-Å-resolution cryo-EM structure of yeast Maf1 bound to RNA polymerase III (Pol III) explains the molecular mechanism for Pol III inhibition.
Journal Article
Molecular mechanisms of Bdp1 in TFIIIB assembly and RNA polymerase III transcription initiation
2017
Initiation of gene transcription by RNA polymerase (Pol) III requires the activity of TFIIIB, a complex formed by Brf1 (or Brf2), TBP (TATA-binding protein), and Bdp1. TFIIIB is required for recruitment of Pol III and to promote the transition from a closed to an open Pol III pre-initiation complex, a process dependent on the activity of the Bdp1 subunit. Here, we present a crystal structure of a Brf2–TBP–Bdp1 complex bound to DNA at 2.7 Å resolution, integrated with single-molecule FRET analysis and in vitro biochemical assays. Our study provides a structural insight on how Bdp1 is assembled into TFIIIB complexes, reveals structural and functional similarities between Bdp1 and Pol II factors TFIIA and TFIIF, and unravels essential interactions with DNA and with the upstream factor SNAPc. Furthermore, our data support the idea of a concerted mechanism involving TFIIIB and RNA polymerase III subunits for the closed to open pre-initiation complex transition.
Transcription initiation by RNA polymerase III requires TFIIIB, a complex formed by Brf1/Brf2, TBP and Bdp1. Here, the authors describe the crystal structure of a Brf2-TBP-Bdp1 complex bound to a DNA promoter and characterize the role of Bdp1 in TFIIIB assembly and pre-initiation complex formation.
Journal Article
Intra-tumor genetic heterogeneity and alternative driver genetic alterations in breast cancers with heterogeneous HER2 gene amplification
by
Cottu, Paul H
,
Cowell, Catherine F
,
Rodrigues, Daniel N
in
Breast
,
Breast cancer
,
Breast Neoplasms - genetics
2015
HER2 is overexpressed and amplified in approximately 15% of invasive breast cancers, and is the molecular target and predictive marker of response to anti-HER2 agents. In a subset of these cases, heterogeneous distribution of HER2 gene amplification can be found, which creates clinically challenging scenarios. Currently, breast cancers with HER2 amplification/overexpression in just over 10% of cancer cells are considered HER2-positive for clinical purposes; however, it is unclear as to whether the HER2-negative components of such tumors would be driven by distinct genetic alterations. Here we sought to characterize the pathologic and genetic features of the HER2-positive and HER2-negative components of breast cancers with heterogeneous HER2 gene amplification and to define the repertoire of potential driver genetic alterations in the HER2-negative components of these cases.
We separately analyzed the HER2-negative and HER2-positive components of 12 HER2 heterogeneous breast cancers using gene copy number profiling and massively parallel sequencing, and identified potential driver genetic alterations restricted to the HER2-negative cells in each case. In vitro experiments provided functional evidence to suggest that BRF2 and DSN1 overexpression/amplification, and the HER2 I767M mutation may be alterations that compensate for the lack of HER2 amplification in the HER2-negative components of HER2 heterogeneous breast cancers.
Our results indicate that even driver genetic alterations, such as HER2 gene amplification, can be heterogeneously distributed within a cancer, and that the HER2-negative components are likely driven by genetic alterations not present in the HER2-positive components, including BRF2 and DSN1 amplification and HER2 somatic mutations.
Journal Article
DNA origami-based single-molecule force spectroscopy elucidates RNA Polymerase III pre-initiation complex stability
2020
The TATA-binding protein (TBP) and a transcription factor (TF) IIB-like factor are important constituents of all eukaryotic initiation complexes. The reason for the emergence and strict requirement of the additional initiation factor Bdp1 in the RNA polymerase (RNAP) III system, however, remained elusive. A poorly studied aspect in this context is the effect of DNA strain arising from DNA compaction and transcriptional activity on initiation complex formation. We made use of a DNA origami-based force clamp to follow the assembly of human initiation complexes in the RNAP II and RNAP III systems at the single-molecule level under piconewton forces. We demonstrate that TBP-DNA complexes are force-sensitive and TFIIB is sufficient to stabilise TBP on a strained promoter. In contrast, Bdp1 is the pivotal component that ensures stable anchoring of initiation factors, and thus the polymerase itself, in the RNAP III system. Thereby, we offer an explanation for the crucial role of Bdp1 for the high transcriptional output of RNAP III.
TATA-binding protein (TBP) and a transcription factor (TF) IIB-like factor are important constituents of all eukaryotic initiation complexes. Here, the authors use a DNA origami-based force clamp to investigate the assembly dynamics of human initiation complexes in the RNAP II and RNAP III systems at the single-molecule level under pico newton forces.
Journal Article
Genomic Study of RNA Polymerase II and III SNAPc-Bound Promoters Reveals a Gene Transcribed by Both Enzymes and a Broad Use of Common Activators
by
Canella, Donatella
,
Praz, Viviane
,
Michaud, Joëlle
in
Biology
,
DNA-Binding Proteins - genetics
,
Enzymes
2012
SNAP(c) is one of a few basal transcription factors used by both RNA polymerase (pol) II and pol III. To define the set of active SNAP(c)-dependent promoters in human cells, we have localized genome-wide four SNAP(c) subunits, GTF2B (TFIIB), BRF2, pol II, and pol III. Among some seventy loci occupied by SNAP(c) and other factors, including pol II snRNA genes, pol III genes with type 3 promoters, and a few un-annotated loci, most are primarily occupied by either pol II and GTF2B, or pol III and BRF2. A notable exception is the RPPH1 gene, which is occupied by significant amounts of both polymerases. We show that the large majority of SNAP(c)-dependent promoters recruit POU2F1 and/or ZNF143 on their enhancer region, and a subset also recruits GABP, a factor newly implicated in SNAP(c)-dependent transcription. These activators associate with pol II and III promoters in G1 slightly before the polymerase, and ZNF143 is required for efficient transcription initiation complex assembly. The results characterize a set of genes with unique properties and establish that polymerase specificity is not absolute in vivo.
Journal Article
Yeast Rrn7 and Human TAF1B Are TFIIB-Related RNA Polymerase I General Transcription Factors
2011
Eukaryotic and archaeal multisubunit RNA polymerases (Pols) are structurally related and require several similar components for transcription initiation. However, none of the Pol I factors were known to share homology with transcription factor IIB (TFIIB) or TFIIB-related proteins, key factors in the initiation mechanisms of the other Pols. Here we show that Rrn7, a subunit of the yeast Pol I core factor, and its human ortholog TAF1B are TFIIB-like factors. Although distantly related, Rrn7 shares many activities associated with TFIIB-like factors. Domain swaps between TFIIB-related factors show that Rrn7 is most closely related to the Pol III general factor Brf1. Our results point to the conservation of initiation mechanisms among multisubunit Pols and reveal a key function of yeast core factor/human SL1 in Pol I transcription.
Journal Article
STAT3 promotes RNA polymerase III-directed transcription by controlling the miR-106a-5p/TP73 axis
2023
Deregulation of Pol III products causes a range of diseases, including neural diseases and cancers. However, the factors and mechanisms that modulate Pol III-directed transcription remain to be found, although massive advances have been achieved. Here, we show that STAT3 positively regulates the activities of Pol III-dependent transcription and cancer cell growth. RNA-seq analysis revealed that STAT3 inhibits the expression of TP73, a member of the p53 family. We found that TP73 is not only required for the regulation of Pol III-directed transcription mediated by STAT3 but also independently suppresses the synthesis of Pol III products. Mechanistically, TP73 can disrupt the assembly of TFIIIB subunits and inhibit their occupancies at Pol III target loci by interacting with TFIIIB subunit TBP. MiR-106a-5p can activate Pol III-directed transcription by targeting the TP73 mRNA 3’ UTR to reduce TP 73 expression. We show that STAT3 activates the expression of miR-106a-5p by binding to the miRNA promoter, indicating that the miR-106a-5p links STAT3 with TP73 to regulate Pol III-directed transcription. Collectively, these findings indicate that STAT3 functions as a positive regulator in Pol III-directed transcription by controlling the miR-106a-5p/TP73 axis.
Journal Article
High-resolution structure of TBP with TAF1 reveals anchoring patterns in transcriptional regulation
by
Siponen, Marina I
,
Kokubo, Tetsuro
,
Helander, Sara
in
631/337/572
,
631/535/1266
,
631/535/878/1263
2013
The general transcription factor TFIID comprises TATA-binding protein (TBP) and TBP-associated factors (TAFs). The high-resolution structure of yeast TBP in complex with yeast TAF1 containing both transcriptionally activating and repressing regions reveals detailed and specific molecular patterns of interactions with TBP and their significance for transcriptional regulation.
The general transcription factor TFIID provides a regulatory platform for transcription initiation. Here we present the crystal structure (1.97 Å) and NMR analysis of yeast TAF1 N-terminal domains TAND1 and TAND2 bound to yeast TBP, together with mutational data. We find that yeast TAF1-TAND1, which in itself acts as a transcriptional activator, binds TBP's concave DNA-binding surface by presenting similar anchor residues to TBP as does Mot1 but from a distinct structural scaffold. Furthermore, we show how TAF1-TAND2 uses an aromatic and acidic anchoring pattern to bind a conserved TBP surface groove traversing the basic helix region, and we find highly similar TBP-binding motifs also presented by the structurally distinct TFIIA, Mot1 and Brf1 proteins. Our identification of these anchoring patterns, which can be easily disrupted or enhanced, provides insight into the competitive multiprotein TBP interplay critical to transcriptional regulation.
Journal Article